350 rub
Journal Information-measuring and Control Systems №5 for 2013 г.
Article in number:
Artificial intelligence and cognitive sciences
Keywords:
artificial intelligence
cognitive sciences
brain
computer paradigm
categorization
recognition
gestalt
Authors:
O.P. Kuznetsov
Abstract:
Relationship of artificial intelligence and the cognitive sciences studying information processing of a brain are considered. Phenomenological approach to the solution of the intellectual tasks, standard in AI is criticized. Signaling speeds in a brain million times more slowly, than in the computer; nevertheless there are intellectual problems which the brain solves more effectively than the computer. It testifies that the mechanisms of a brain solving these problems, essentially differ from the logical and algorithmic methods used in computer programs. Existing models of artificial neural networks are too simple. Their architecture doesn\'t reflect difficult architecture of the brain in which cognitive procedures are realized. Besides, they are also based on phenomenological approach and don\'t apply for modeling of processes of a brain. The task consists in creating the artificial neural networks modeling these processes. There are two perspective approaches to creation of such networks: networks with holographic effects and the theory of columns of Hawkins.
Pages: 16-24
References
- WienerN.CyberneticsorControlandCommunicationintheAnimalandtheMachine. TheTechnologyPressandJohnWiley& Sohns. N. Y. - HermannetCie, Paris. 1948. Rus. per.: N. Viner. Kibernetika, ili upravlenie i svjaz v zhivotnom i mashine. Izd. 2-e. M.: Sov. radio, 1968.
- vonNeumannJ.TheComputerandtheBrain. NewHaven, YaleUniv. Press. 1958. Rus. per.: Dzh. Fon Nejjman. Vychislitelnaja mashina i mozg. Kiberneticheskijj sb. M.: IL. 1960. № 1.
- Turing A. M. Computing machinery and intelligence. Mind. V. 59. Rus. per.: A. Tjuring. Mozhet li mashina myslit - / M.: Fizmatgiz. 1960.
- Ashby W. R. Design for a Brain. / John Wiley & Sohns. N. Y. 1952. Rus. per: EHshbi U. R. Konstrukcija mozga. M.:IL, 1962.
- Miller G. A. Cognitive revoluton: a historical perspective // Trends in Cognitive Sciences. 2003. V. 7. № 3. Citiruetsjapo [6].
- Kognitivnajapsikhologija: istorijaisovremennost. KHrestomatija. Per. sangl. Podred. M. FalikmaniV. Spiridonova.M.: Lomonosov, 2011.
- HawkinsJeffOnIntelligence. N. Y. Henry Holt and Company. 2005. Rus. per.: KHokinsDzheff. Obintellekte. M.: Viljams, 2007.
- Arbib M. A. Metaphorical Brain / Wiley. N. Y.: 1972. Rus. per.: ArbibM. Metaforicheskijjmozg. M.: Mir. 1976.
- Pinker S. How the Mind Works. W. W. Norton & Company. London, 1997.
- PospelovD. A.Metafora, obrazisimvolvpoznaniimira. // Novosti iskusstvennogo intellekta. 1998. № 1. S. 94-14.
- Paivio A. Dual coding theory and education. Draft chapter for the conference on «Pathways to Literacy Achievement for High Poverty Children». // The University of Michigan School of Education, 2006. Citiruetsjapo [6].
- Velichkovskijj B. M. Kognitivnaja nauka: Osnovy psikhologii poznanija: v 2 t. / M.: Akademija, 2006.
- Lakoff J. Women, Fire and Dangerous Things: What Categories Reveal About the Mind. UniversityofChicagoPress, 1987. Rus. per.: Lakoff D. ZHenshhiny, ogon i opasnye veshhi: CHto kategorii jazyka govorjat nam o myshlenii. M. 2004.
- Sowa J. F. Conceptual Structures Information Processing in Mind and Machines. Addison-Wesley Publ.Comp. 1984.
- Minsky M. L. Framework for representing knowledge // P.H. Winston (ed). The Psychology of Computer Vision. McGraw-Hill, 1975. Rus. per.: M. Minskijj. Frejjmy dlja predstavlenija znanijj. M.: EHnergija, 1979.
- Kuznecov O. P. Kognitivnaja semantika i iskusstvennyjj intellekt // Iskusstvennyjj intellekt i prinjatie reshenijj. 2012. № 4. S. 32 -42.
- PribramK. H.LanguagesoftheBrain. Experimental paradoxes and principles in neuropsychology // Englewood Cliffs, №. J.: Prentice-Hall, 1971. Rus. per.: Karl Pribram. JAzyki mozga. EHksperimentalnye paradoksy i principy nejjropsikhologii. M.: «Progress», 1975.
- Kuznecov O. P. Psevdoopticheskie nejjronnye seti - prjamolinejjnye modeli // Avtomatika i telemekhanika. 1996. № 12. S. 160 -172.
- Kuznecov O. P., SHipilina L. B. Psevdoopticheskie nejjronnye seti - polnaja prjamolinejjnaja model i metody rascheta ee povedenija // Teorija i sistemy upravlenija, 2000. № 5. S. 168 - 176.
- Pavlov A. V. Realizacija pravdopodobnykh vyvodov na nejjrosetjakh so svjazjami po skheme golografii Fure. // Iskusstvennyjj intellekt i prinjatie reshenijj. 2010. № 1. S. 3 -14.