350 rub
Journal Information-measuring and Control Systems №4 for 2012 г.
Article in number:
The Estimation of Information Reliability of Diagnostic Inferences in Electromyography by the Method of an Fuzzy Logic Conclusion
Keywords:
the fuzzy logic
linguistic variables
accessory function
fuzzification
aggregation
accumulation
defuzzification
Authors:
N.T. Abdullayev, K.Sh. Ismayilova
Abstract:
The procedure of an fuzzy logic conclusion for the support of diagnostic decision-making based on the computer processing of measured parameters of electromyography signals allows to decrease the probability of errors during the diagnosis of neuromuscular diseases.
Construction of the majority of diagnostic medical systems of the fuzzy conclusion is based on fulfillment of the following algorithm: formation of the basic of rules of a logic conclusion; fuzzification (reductions to fuzzyness) of output variables; aggregation of sub-conditions; activation of sub-conclusions; accumulation of conclusions; defuzzification.
All stages of the algorithm are interconnected and, in general, make it possible to present fuzzy conclusion process as a sequence of concrete operations. At the final stage, the estimation of information reliability of a diagnostic inference is carried out. Computer realization of the algorithm is carried out in the software environment МATLAB 7 with the help of FIS toolbox.
The considered procedure of the electromyographic inspection of the patient on the basis of fuzzy logic technology provides support for the formation of a correct diagnostic inference by a doctor.
Pages: 60-67
References
- Кореневский Н.А. Проектирование систем принятия решений на нечетких сетевых моделях в задачах медицинской диагностики и прогнозирования // Вестник новых медицинских технологий. 2006. Т. ХIII. № 2. С. 6-9.
- Локтюхин В.Н., Мальченко С.И., Черепнин А.А. Основы математического обеспечения поддержки диагностических решений в биологических системах с использованием нечеткой логики. Рязань: РГРТУ. 2009.
- Абдуллаев Н.Т., Исмайлова К.Ш. Автоматизированная диагностическая система для электромиографии с использованием нечеткой логики // Тезисы докладов Междунар. науч. конф. «Автоматизированные системы управления и современные информационные технологии». Тбилиси. 2011. С. 51-52.
- Касаткина Л.Ф., Гильванова О.В. Электромиографические методы исследования в диагностике нервно-мышечных заболеваний. Игольчатая электромиография. М.: Медика. 2010.