350 rub
Journal Information-measuring and Control Systems №12 for 2012 г.
Article in number:
Stabilization algorithms of discrete control system with singleton-output
Authors:
О.V. Druzhinina, О.N. Masina
Abstract:
Effective reduction of compressed signal amplitude is provided when the phase of topology adjacent areas changes to 180 degrees. Physically this phase change for all areas can be achieved only by the local changes of primary signal delay time with one side of the interdigital transducer (IDT). A significant signal change at the sensor output may also be achieved under other laws of speed change of a surface acoustic wave (SAW) on the acoustic waveguide. In particular there can be used constructions in which the linear dependence of SAW velocity (Roberval parallelogram) is implemented. Stabilization algorithms of discrete control system with singleton-output are proposed. The specified system relates to control systems with logic controllers. Functioning of system is based on rules of form if - then, defining interrelation between multiple inputs and one output of studied system. The combined method of Lyapunov functions based on combined using of Lyapunov functions and properties of linear matrix inequalities is used. The obtained results can be used for the solution of problems of stability and stabilization of controlled systems with logic controllers, and also for improvement of technical control systems.
Pages: 35-41
References
  1. Пегат А. Нечеткое моделирование и управление. М.: БИНОМ. Лаборатория знаний, 2009.
  2. Sugeno M. On stability of fuzzy systems expressed by fuzzy rules with singleton consequents // IEEE Transactions on Fuzzy Systems. 1999. V. 7. № 2. P. 201-224.
  3. Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control // IEEE Trans. Syst., Man and Cyber. 1985. V. 15. P. 116-132.
  4. Tanaka K., Wang H.O. Fuzzy control systems design and analysis: a linear matrix inequality approach. N.Y.: Wiley, 2001.
  5. Braae M.,  Rutherford D.A. Selection of parameters for a fuzzy logic controller // Fuzzy Sets and Systems. 1979. V. 2. P. 185-199.
  6. Driankov D., Hellendorm H., Reich Frank M. An introduction to fuzzy control.  Berlin: Springer, 1996.
  7. Васильев С.Н. К интеллектному управлению // Нелинейная теория управления и ее приложения. М.: Физматлит, 2000. С. 57-126.
  8. Поспелов Д.А. Логико-лингвистические модели в системах управления. М.: Энергоиздат, 1981.
  9. Моисеев Н.Н. Теория управления и проблема «человек-окружающая среда» // Вестник АН СССР. 1980. № 1. С. 62-73.
  10.  Шестаков А.А. Обоб­щен­­ный прямой метод Ляпунова для систем с рас­пре­де­лен­ными параметрами. М.: УРСС, 2007.
  11. Меренков Ю.Н. Математическое моделирование и качественный анализ математических моделей динамических систем. Дисс. - докт. физ.-матем. наук. М.: РГОТУПС, 2003.
  12. Масина О.Н., Дружинина О.В. Моделирование и анализ устойчивости некоторых классов систем управления. М.:
    ВЦРАН, 2011.