350 rub
Journal Information-measuring and Control Systems №2 for 2011 г.
Article in number:
Methods of primary digital signal processing for a micromechanical solid-state wave gyroscope
Authors:
V. M. Achildiev, M. A. Basarab, N. A. Bedro, Yu. K. Gruzevich, B. S. Lunin, V. A. Matveev, V. A. Soldatenkov, S. P. Timoshenkov, Yu. A. Chaplygin, A. V. Yurin
Abstract:
Increase of operating accuracy of modern primary information sensors can be achieved due to the use of effective algorithms of digital signal processing. In the article, application of some methods for digital processing of signals of the micromechanical solid-state wave gyro is considered. Among the possible approaches the following techniques are studied. The Fourier method for filtration of specific harmonics of a signal is a classical method, widely being used in practice of digital signal processing. This method allows revealing benefits and disadvantages of other techniques. In particular, the wavelet analysis is one of the possible alternatives of the Fourier method, which allows localization both in frequency and time domains. Some specific types of wavelets for processing data of the micromechanical solid-state wave gyro are proposed. The simplest way for processing information represented in the form of a discrete set of samplings is based on data averaging. However, in modern literature the main sources regulating methods and algorithms of adjusting, calibration, and processing signals of primary information sensors of navigation systems are the IEEE standards. In these standards, for analysis of different types of noises in sensors, the Allan variance technique is recommended to use instead of the ordinary averaging algorithms. In the article, for the first time this approach is applied for processing data of micromechanical solid-state wave gyro placed both on the rotating and unmoved basement. Algorithms considered in the work can be applied for digital signal processing of other sensors of primary informaton including vibratory and fiber-optic gyroscopes, micromechanical accelerometers et al.
Pages: 39-55
References
  1. Журавлев В. Ф., Климов Д. М. Волновой твердотельный гироскоп. М.: Наука. 1985.
  2. Матвеев В. А., Лунин Б. С., Басараб М. А.Навигационные системы на волновых твердотельных гироскопах. М.: Физматлит. 2008.
  3. Ачильдиев В. М. Микромеханические устройства систем управления движением и навигацией. М.: Московский государственный университет леса. 2004.
  4. Патент РФ. Чувствительный элемент микромеханического датчика // Ю. А. Чаплыгин, С. П. Тимошенков , В. В.Калугин и др., 2007.
  5. Тимошенков С. П., Зотов С. А., Калугин В. В.Разработка и изготовление чувствительных элементов микроэлектромеханических систем. // Изв. вузов. Электроника. 2005. № 4-5. С. 125-129.
  6. Цифровая обработка сигналов: практический подход. 2-е изд.: Пер. с англ. М.: Изд. дом «Вильямс». 2004.
  7. Гуткинов В. С. Фильтрация измерительных сигналов. Л.: Энергоатомиздат. 1990.
  8. Смоленцев Н. К. Основы теории вейвлетов. Вейвлеты в MATLAB. М.: ДМКПресс. 2005.
  9. Allan, D. W., Time and Frequency (Time-Domain) Characterization, Estimation and Prediction of Precision Clocks and Oscillators // IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control. 1987. V. UFFC-34. No. 6. P. 647-654.
  10. Кучерков С. Г., Лычев Д. И., Скалон А. И., Чертков Л. А. Использование вариации Аллана при исследовании характеристик микромеханического гироскопа // Гироскопия и навигация. 2003. № 2. С. 98-104.
  11. Trusov, A. A., Schofield, A. R., Shkel, A. M., Performance Characterization of a New Temperature-Robust Gain-Bandwidth Improved MEMS Gyroscope Operated in Air // Sensors and Actuators A: Physical (2008), doi:10.1016/j.sna.2008.11.003.
  12. IEEE Recommended Practice for Inertial Sensor Test Equipment, Instrumentation, Data Acquisition and Analysis. IEEE Std. 1554-2005. P. 72.
  13. Кравченко В. Ф., Рвачев В. Л. Алгебра логики, атомарные функции и вейвлеты в физических приложениях. М.: Физматлит. 2006.