350 rub
Journal Information-measuring and Control Systems №12 for 2011 г.
Article in number:
The analysis of asymptotic stability and stabilization of some classes of control systems with delay
Authors:
A. A. Shestakov, О. N. Masina, О. V. Druzhinina
Abstract:
The work is devoted to research of asymptotic stability of controlled nonlinear systems, which are generalizations of Takagi-Sugeno systems on a case of delay. Global asymptotic stability of conditions of equilibrium states on the basis Lyapunov functions is studied. Stabilizing feedback is constructed. Takagi-Sugeno systems with delay are described by fuzzy rules of type IF-THEN and based on using of fuzzy controllers. Modification of system Takagi-Sugeno with delay on a case of matrixes with uncertainties is considered. Stability conditions of equilibrium states of the specified systems are obtained by the aid of Lyapunov-Krasovsky functionals. The obtained results can be used for working out approaches to designing and to improvement of technical control system.
Pages: 104-109
References
  1. Takagi, T., Sugeno, M., Fuzzy identification of systems and its applications to modeling and control // IEEE Trans. Syst., ManandCyber. 1985. V. 15. P. 116-132.
  2. Пегат А. Нечеткое моделирование и управление. М.: БИНОМ. Лаборатория знаний. 2009.
  3. Гостев В. И.Нечеткие регуляторы в системах автоматического управления. Киев: Радiоматор. 2008.
  4. Gu, Y., Wang, H. O., Tanaka, K., Fuzzy control of nonlinear time-delay systems: stability and design issues // Proc. of the American Control Conf. Arlington. 2001.
  5. Yoneyama J. Robust stability and stabilization for uncertain Takagi-Sugeno fussy time-delay systems// Fuzzy Sets and Systems. 2007. V. 158. P. 115-134.
  6. Tanaka, K., Wang, H. O. Fuzzy control systems design and analysis: a linear matrix inequality approach. N.Y.: Wiley. 2001.
  7. Li, J., Wang, H.O.,Niemann, D., Tanaka, K., Dynamic paral­lel distributed compensation for Takagi-Sugeno fussy systems: An LMI approach// Information Sciences. 2000. V. 123. P. 201-221.
  8. Шестаков А. А.Обобщенный прямой метод Ляпунова для систем с распределенными параметрами. М.: УРСС. 2007.
  9. Дружинина О. В., Масина О. Н. Методы исследования устойчивости и управляемости нечетких и стохастических динамических систем. М.: ВЦ РАН. 2009.