350 rub
Journal Information-measuring and Control Systems №2 for 2010 г.
Article in number:
Neuron-Like Coding Systems for Detection, Tracking and Clustering of Objects
Authors:
N.S. Bellyustin, Yu.D. Kalafati, A.V. Koval-chuk, A.A. Tel-nykh, O.V. Shemagina, V.G. Yakhno
Abstract:
We describe neuron-like coding algorithms which make it possible to solve both the problem of video-stream detection of an arbitrary object against a complex background and the problem of its subsequent tracking. The possibility of using a uniform two-dimensional neuron-like medium for location of objects against a complex background is shown. The principles of construction of a decision function which permits taking a decision on whether the desired object is present in the region are considered. An algorithm for the tracking system which allows tracking an object even with drastic variations in its characteristics (face tracking with arbitrary face position) is proposed. The possibility of increasing the information capacity of the video surveillance system due to merging of the video sequences is also demonstrated. The solution of these problems makes it possible to create an advanced video surveillance system which is able not only to detect and track objects, but also analyze the obtained video information and make up a generalized informative report on observed events.
Pages: 29-34
References
  1. Turk M., Pentland A.  Eigenfaces for recognition // Journal of Cognitive Neuroscience. 1991. V. 3. P. 71 - 86.
  2. Oliver Jesorsky, Klaus J. Kirchberg, and Robert W. Frischholz Robust Face Detection Using the Hausdorff Distance // In Proc. Third International Conference on Audio- and Video-based Biometric Person Authentication, Springer, Lecture Notes in Computer Science, LNCS- 091. P. 90 - 95. Halmstad. Sweden. 6-8 June 2001.
  3. Хайкин С. Нейронные сети. Полный курс. М.: Изд. дом «Вильямс». 2006.
  4. Viola P & Jones M. Rapid Object Detection using boosted cascade of simply classifiers. 2001.
  5. Нуйдель И.В., Кузнецов С.О. Использование однородных нейроноподобных сред для обработки изображений // Изв. вузов. Сер. Радиофизика. 1994. Т.37. № 8. С. 1053 - 1061.
  6. Kuzhetsov S.O. Nuildel I.V., Yakhno V.G. Segmentation and Pattern Recognition of a Composite Image Product by System of Elements with Neural-network Architecture // In book: Neurocomputers and Attention / ed. A. Holden, A. Kryuk. Manchester University Press. 1991. P. 591 - 596.
  7. Яхно В.Г., Беллюстин Н.С., Красильникова И.Г., Кузнецов С.О., Нуйдель И.В., Панфилов А. И., Перминов А.О., Шадрин А.В., Шевырев А.А. Исследовательская система принятия решений по фрагментам сложного изображения, использующая нейроноподобные алгоритмы // Изв. вузов. Сер. Радиофизика. 1994. Т. 37. № 8.С.961 - 986.
  8. Bellustin N.S., Kuznetsov S.O., Nuidel I.V., Yakhno V.G. Neural Networks with Close Nonlocal Coupling for Analyzing Composite Images // Neurocomputing. 1991. V.3. P 231 - 246.
  9. Беллюстин Н.С., Калафати Ю.Д., Ковальчук А.В., Тельных А.А., Шемагина О.В., Яхно В.Г. Нейроподобный детектор лица. Технические особенности реализации и обучения // X Всероссийская научно-техническая конференция «Нейроинформатика-2008». Сборникнаучныхтрудов. Часть2. М.: МИФИ. 2008. C. 123 - 132.
  10. Bouguet J.- Y. Pyramidal Implementation of the Lucas Kanade Feature Tracker: Description of the algorithm, Technical Report, Intel Corporation: Microprocessor Research Labs. 2000. OpenCV documentation.