F.K. Aliev1, A.P. Baranov2, A.V. Ivakhin3, A.V. Korolkov4, V.I. Rudskoy5
1 Department of Information Systems of the Ministry of Defense of the Russian Federation (Moscow, Russia)
2 Analytical Center JSC (Moscow, Russia)
3 SberTech JSC (Moscow, Russia)
4 FSBI HE Russian Technological University – MIREA (Moscow, Russia)
5 Technical Committee for Standardization "Cryptographic Information Protection" (TK26) (Moscow, Russia)
1 alievfk@mail.ru, 2 baranov.ap@yandex.ru, 3 alexvaiv@mail.ru, 4 ankor11111@mail.ru, 5 rudskoy_vi@tc26.ru
Currently, significant results have emerged in the field of creation and application of quantum computers. We are talking about the Chinese quantum photonic computers Jiuzhang, Jiuzhang-2 (Jiuzhang 2.0), Jiuzhang-3 (Jiuzhang 3.0), which appeared respectively in 2020, 2021 and 2023, as well as the Canadian quantum photonic computer Borealis, which appeared in 2022. All these computers belong to the class of so-called quantum simulators – variants of quantum computers that solve one problem or a narrow class of problems. In addition to narrow specialization, quantum simulators have another important feature. In quantum simulators, controllable quantum objects simulate and effectively predict the behavior of real quantum systems. For example, in the quantum photonic computers Jiuzhang, Jiuzhang-2, Jiuzhang-3 and Borealis, the photons supplied to the inputs of these computers imitate the behavior of a “system of non-interacting identical bosons.” The Jiuzhang, Jiuzhang-2, Jiuzhang-3, and Borealis quantum simulators solve the problem of sampling bosons from a given distribution.
Together they represent a significant scientific, technical and technological breakthrough in the development and creation of quantum computers. However, beyond what has been achieved, a number of important issues that are of interest both theoretically and for the field of practical applications remain unexamined. Among them are the following: about the architecture and composition of the elements of a quantum photonic computer, their number and connection diagram, as well as setting parameters that determine the required probability distribution from which boson samples are taken.
The scientific problem addressed in the article is to obtain answers to the above questions by developing the theoretical foundations for creating a quantum photonic computer that solves the problem of sampling bosons from a given distribution in the most general case without restrictions on the distribution.
The following results were obtained: the theoretical basis for the creation of a quantum photon computer (called in the article the Fuzuli boson sampler, briefly bsF) was developed that solves the problem of sampling bosons from a given distribution, for use as a quantum computing subsystem of a hybrid computing system to solve the problem of estimating matrix permanents; its constituent elements have been identified and studied, their numbers have been determined, and inter-element connection diagrams have been developed; an algorithm has been developed for tuning the bsF quantum photon computer to solve the problem of estimating matrix permanents; The functioning process of bsF is described.
The article assumes that physically, in each cycle of operation of the bsF computer, the process of supplying photons to the inputs of the computer, their “movement” to the detectors, as well as the registration of photons by detectors is organized in such a way that the set of these photons imitates the behavior of a system of non-interacting identical bosons. Physical and engineering issues of ensuring such behavior of photons are not considered in this work. At the same time, the feasibility of such a possibility in practice (experimentally) is assumed to be undeniable. Examples confirming this position are the already created prototypes of quantum photonic computers in China (Jiuzhang, Jiuzhang-2, Jiuzhang-3) and in Canada (Borealis).
Aliev F.K., Baranov A.P., Ivakhin A.V., Korolkov A.V., Rudskoy V.I. Theoretical foundations for creating a quantum photon computer. Highly Available Systems. 2024. V. 20. № 2. P. 5−27. DOI: https://doi.org/ 10.18127/j20729472-202402-01 (in Russian)
- Han-Sen Zhong, Hui Wang, Yu-Hao Deng et al. Quantum computational advantage using photons. URL: https://science.sciencemag.org/.content/ 370/6523/1460.full (data obrashcheniya: 25.01.2024).
- Aaronson S. Kvantovye vychisleniya so vremen Demokrita: Per. s angl. M.: Al'pina non-fikshn. 2018. 494 s.
- Aaronson S, Arkhipov A. The computational complexity of linear optics. In Proceedings of Annual ACM Symposium on Theory of Computing. 2011. P. 333–342.
- Han-Sen Zhong et al. Phase Programmable Gaussian Boson Sampling Using Stimulated Squeezed Light. Phys. Rev. Lett. 127/180502 Published 25 October 2021.
- Lars S. Madsen et al. Quantum computational advantage with a programmable fotonic proceccor. Nature. 2022. V.606. P. 75–81. DOI: 10. 1038/s41586-022-04725-x.
- Yu-Hao Deng and others. Gaussian Boson Sampling with Pseudo-Photon Number Resolving Detectors and Quantum Computational Advantage. arXiv: 2304.12240v3 [quant-ph] 1 Sep. 2023. URL: https//arxiv.org/pdf/2304.12240.pdf (data obrashcheniya 25.01.2024)
- Fejnman R. Statisticheskaya mekhanika. M.: Platon. 2000. 407 s. (in Russian).
- Troyansky L., Tishby N. Permanent uncertainty: On the quantum evaluation of the determinant and the permanent of a matrix. In Proceedings of PhysComp. 1996.
- Sokolov I.A., Budzko V.I., Sinicyn I.N. Postroenie informacionno-telekommunikacionnyh sistem vysokoj dostupnosti. Sistemy vysokoj dostupnosti. 2005. № 1. S. 6–14 (in Russian).
- Ermakov S.M. Metod Monte-Karlo v vychislitel'noj matematike. M.: BINOM. 2018. 192 s. (in Russian).
- Ivchenko G.I., Medvedev Yu.I. Vvedenie v matematicheskuyu statistiku. M.: Izdatel'stvo LKI, 2010. 600 s. (in Russian).
- Aliev F.K., Bukin E.G., Korol'kov A.V., Matveev E.A. Kvantovaya fotonnaya komp'yuternaya tekhnologiya resheniya slozhnyh vychislitel'nyh zadach sistem vysokoj dostupnosti. Sistemy vysokoj dostupnosti. 2021. T. 17. № 4. S. 34–54 (in Russian).
- Sachkov V.N. Kurs kombinatornogo analiza. M.–Izhevsk: NIC «Regulyarnaya i haoticheskaya dinamika». 2013. 336 s. (in Russian).
- Aliev F.K., Baranov A.P., Ivahin A.V., Korol'kov A.V., Rudskoj V.I., Sencov A.G. Matematicheskie osnovy primeneniya kvantovoj fotonnoj komp'yuternoj tekhnologii resheniya slozhnyh vychislitel'nyh zadach sistem vysokoj dostupnosti. Sistemy vysokoj dostupnosti. 2023. T. 19. № 1.
S. 14–27 (in Russian). - Sachkov V.N. Kombinatornye metody diskretnoj matematiki. M.: Nauka. 1977. 320 s. (in Russian).
- Sachkov V.N. Vvedenie v kombinatornye metody diskretnoj matematiki. M.: Nauka. 1982. 384 s. (in Russian).
- Sachkov V.N., Tarakanov V.E. Kombinatorika neotricatel'nyh matric. M.: TVP. 2000. 448 s. (in Russian).
- Evnin A.Yu. Permanent matricy i ego vychislenie. Matematicheskoe obrazovanie. 2008. № 2(46). S. 45–49 (in Russian).
- Skiena S. Algoritmy. Rukovodstvo po razrabotke: Per. s angl. SPb.: BHV – Peterburg. 2021. 720 s. (in Russian).
- Aliev F.K., Korol'kov A.V., Matveev E.A. Neseparabel'nye sostoyaniya mnogokubitnyh kvantovyh sistem. Monografiya. Pod red. F.K. Alieva. M.: Radiotekhnika. 2017. 320 s. (in Russian)
- Prosolov V.V. Zadachi i teoremy linejnoj algebry. M.: MCNMO. 2015. 576 s. (in Russian)
- Lankaster P. Teoriya matric: Per. s angl. M.: Nauka. 1982. 272 s. (in Russian)
- Maslennikov O.V., Aliev F.K., Bespalov S.A., Gajnov A.E. Voennye prilozheniya zadach o potokah i razrezah v seti. Voennaya mysl'. 2024. № 2.
S. 92–103 (in Russian). - Maslennikov O.V., Aliev F.K., Bespalov S.A., Mishin V.E. Vychislitel'nye sistemy voennogo naznacheniya: perspektivy razvitiya v sovremennyh usloviyah. Voennaya mysl'. 2022. № 6. S. 71–78 (in Russian).
- Maslennikov O.V., Aliev F.K., Bespalov S.A., Mitroshin E.S. O vychislitel'noj slozhnosti sovremennyh voennyh zadach. Voennaya mysl'. 2023. № 2. S. 72–85 (in Russian).
- L'vovskij A. Otlichnaya kvantovaya mekhanika. V 2 ch: Per. s angl. M.: Al'pina non-fikshn. 2019. 422 s., 304 s. (in Russian).
- Imre Sh., Balazh F. Kvantovye vychisleniya i svyaz'. Inzhenernyj podhod: Per. s angl. M.: Fizmatlit. 2008. 320 s. (in Russian).
- Nil'sen M., Chang I. Kvantovye vychisleniya i kvantovaya informaciya: Per. s angl. M.: Mir. 2006. 824 s. (in Russian)
- Ulf Leonhardt. Measuring the quantum state of light. Cambridge University Press. 208 p. 1997.
- Ulf Leonhardt. Essential Quantum Optics: From Quantum Measuremens to Black Holes. Cambridge University Press. 277 p. 2010.
- Fejnman R., Lejton R, Sends M. Fejnmanovskie lekcii po fizike. Vyp.8, 9. M.: Izd-vo LKI. 2008. 528 s. (in Russian).
- Demidovich B.P., Maron I.A. Osnovy vychislitel'noj matematiki. M.: Nauka. 1970. 664 s. (in Russian).
- Lancosh K. Prakticheskie metody prikladnogo analiza: Per. s angl. M.: Izd-vo fiziko-matematicheskoj literatury. 1961. 524 s. (in Russian).
- Fejnman R., Lejton R., Sends M. Fejnmanovskie lekcii po fizike. Vyp.3. M.: Izd-vo LKI. 2008. 320 s. (in Russian).