Journal Highly available systems №1 for 2019 г.
Article in number:
Software tools for analysis and synthesis of stochastic systems with high availability (VII)
Type of article: scientific article
DOI: 10.18127/j20729472-201901-06
UDC: 621
Authors:

I.N. Sinitsyn – Dr.Sc.(Eng.), Professor, Main Research Scientist, 

FRC «Computer Science and Control» of RAS (Moscow)

E-mail: sinitsin@dol.ru

D.V. Zhukov – Head of Department, 

FRC «Computer Science and Control» of RAS (Moscow)

E-mail: dzhukov@ipiran.ru

E.R. Korepanov – Ph.D.(Eng.), Leading Research Scientist, 

FRC «Computer Science and Control» of RAS (Moscow)

E-mail: ekorepanov@ipiran.ru

T.D. Konashenkova – Leading Programmer, 

FRC «Computer Science and Control» of RAS (Moscow) E-mail: tkonzshenkova@ipiran.ru

Abstract:

The article proceeds the thematic cycle dedicated to software tools for analytical modeling of linear with parametric noises (Gaussian and nongaussian) stochastic systems with high availability based on nonlinear correlation theory (normal approximation method and canonical expansions method). Nowadays such complex stochastic systems describes organizations-technical-economical systems (OTES) functioning in presence of internal and external noises and stochastic factors. Special survey concerning methodological and instrumental software tools for stochastic systems with high availability based on wavelet canonical expansions (WLCE) is given. Survey of stochastic structural theory of OTES based on WLCE, linear and nonlinear correlation theory and correspond algorithms is given. We use: 1) orthogonal expansions of elements of covariance matrix by two dimensional Daubechi wavelet with compact carrier; 2) Galerkin–Petrov wavelet methods; 3) algorithms and software tools «StIT-CE.WL.2». Elements of stochastic systems with parametric noises theory (linear stochastic equations, correlational equations, nonlinear correlational equations and linear equations with parametric noises) are given. For solving corresponding deterministic equations by Daubechi wavelet numerical methods of MATLAB are used. Wavelet algorithms for analytical modeling of mathematical expectation (Section 1 – Linear stochastic systems with parametric noises), covariance matrix (Section 2 – Wavelet analytical modeling mathematical expectation) and matrix of covariance function (Section 3 – Wavelet analytical modeling of covariance matrix) are developed. Special attention is paid to application of algorithms based on WLCE of random wide and narrow band. Formulae for number of members in WLCE of variable in state equations for estimation are suggested (Section 4 – Wavelet analytical modeling covariance function) processes. Wavelet algorithms for express analytical modeling are considered in Section 5 – Implementation for express modeling. Principles of substitution of parametric nongaussian noises by equivalent additive Gaussian noises are discussed. Test example and some generalizations are given in Sections 6 and Conclusion. Results of computer experiments for OTES are presented.

Pages: 47-61
References
  1. Sinitsyn I.N., Sergeev I.V., Korepanov E.R., Konashenkova T.D. Instrumental’noe programmnoe obespechenie analiza i sinteza stokhasticheskikh sistem vysokoy dostupnosti (IV). Sistemy vysokoy dostupnosti. 2017. T. 13. № 3. S. 55−59. (In Russian).
  2. Sinitsyn I.N., Korepanov E.R., Konashenkova T.D., Sergeev I.V. Instrumental’noe programmnoe obespechenie analiza i sinteza sistem vysokoy dostupnosti (V). Sistemy vysokoy dostupnosti. 2018. T. 14. № 1. (In Russian).
  3. Sinitsyn I.N., Korepanov E.R., Konashenkova T.D., Sergeev I.V. Instrumental’noe programmnoe obespechenie analiza i sinteza sistem vysokoy dostupnosti (VI). Sistemy vysokoy dostupnosti. 2018. T. 14. № 1. (In Russian).
  4. Pugachev V.S., Sinitsyn I.N. Lectures on Functional Analysis and Applications. M.: Torus Press. 2017.
  5. Xu J. and Shann W. Galerkin-wavelet methods for two point value problems. Numer. Math. 1992. № 63. P. 123−144.
  6. Gagnon L. and Lina J.M. Symmetric Daubechies' wavelets and numerical solutions of NLS2 equations. J. Phys. A: Math. Gen. 1994. № 27. P. 8207−8230.
  7. Pugachev V.S., Sinitsyn I.N. Stochastic Systems Theory and Applications. Singapore: World Scientific. 2001.
  8. Sinitsyn I.N., Sinitsyn V.I. Lektsii po normal’noy i ellipsoidal’noy approksimatsii v stokhasticheskikh sistemakh. M.: Torus Press. 2013. (In Russian).
  9. Sinitsyn I.N. Kanonicheskie predstavleniya sluchaynykh funktsiy i ikh primeneniya v zadachakh komp’yuternoy podderzhki nauchnykh issledovaniy. M.: Torus Press. 2009. (In Russian).
  10. Lepik U. Numeral solution of evolution equations by the Haar wavelet metods. Appl. Math. Comput. 2007. № 185. P. 695−704.
  11. Lepik U. Application of the Haar wavelet transform to solving integral and differential equations. Proc. Estonian Acad. Sci. Phys. Math. 2007. № 56. P. 28−46.
  12. Pissanetski S. Tekhnologiya razrezhennykh matrits. M.: Mir. 1988. (In Russian).
  13. Sinitsyn I.N., Shalamov A.S. Lektsii po teorii sistem integrirovannoy logisticheskoy podderzhki. M.: Torus Press. 2012. (In Russian).
  14. Sinitsyn I.N., Shalamov A.S. Bazovye tekhnologii upravleniya stoimost’yu zhiznennogo tsikla organizatsionno-tekhniko-ekonomicheskikh sistem. Chasti 1, 2. Sistemy vysokoy dostupnosti. 2014. T. 10. № 4. S. 18−87. (In Russian).
  15. Sinitsyn I.N., Shalamov A.S. Bazovye tekhnologii upravleniya stoimost’yu zhiznennogo tsikla organizatsionno-tekhniko-ekonomicheskikh sistem. Chasti 3−5. Sistemy vysokoy dostupnosti. 2015. T. 11. № 1. S. 23−101. (In Russian).
  16. Sinitsyn I.N., Shalamov A.S. Bazovye tekhnologii upravleniya stoimost’yu zhiznennogo tsikla organizatsionno-tekhniko-ekonomicheskikh sistem. Chast’ 6. Sistemy vysokoy dostupnosti. 2015. T. 11. № 2. S. 3−12. (In Russian).
Date of receipt: 11 апреля 2019 г.