K.K. Abgaryan – Ph.D.(Phys.-Math.), Head of Department, FRC «Computer Science and Control» RAS (Moscow); Head of Department, Moscow Aviation Institute (National Research University) E-mail: kristal83@mail.ru
The multiscale scientific problems are formulated including modeling the phenomena of incomparable spatial and/or temporal scales when solution cannot be achieved without taking into account all the factors that play key roles. The basic principles of the developed information technology for constructing multiscale models with the use of such new concepts as «basic model-composition» and «Multiscale Composition» are presented. For their description a set theory techniques are used. On the actual class of problems for new semiconductor materials it is shown that such an approach can be used in the study of multiscale physical processes or phenomena when the problem arises of combining existing models related to different space/time levels in a computational process. The developed information technology of multiscale modeling can be used to solve inverse problems in determining the chemical composition and structural characteristics of semiconductor heterostructures with a given set of properties, which creates the basis for solving a number of optimization problems relevant to modern microwave electronics.
- Lesard Introduction to Computational Materials Science. Fundamentals to Applications. Cambridge University Press. 2013. 414 p.
- Brodsky Yu.I. Model'nyj sintez i model'no-orientirovannoe programmirovanie. M.: VC RAN. 2013. 142 s.
- Kuratovskij K., Mostovskij A. Teoriya mnozhestv. M.: Mir. 1970. 416 s.
- Abgaryan K.K. Primenenie optimizacionnyh metodov dlya modelirovaniya mnogoslojnyh poluprovodnikovyh nanosistem // Trudy Instituta sistemnogo analiza RAN. Dinamika neodnorodnyh sistem. 2010. T. 53(3). S. 6−9.
- Abgaryan K.K. Zadachi optimizacii nanorazmernyh poluprovodnikovyh geterostruktur // Izvestiya VUZov. Materialy ehlektronnoj tekhniki. 2016. T. 19. № 2. S. 112−118.
- Abgaryan K.K., Reviznikov D.L. Numerical simulation of the distribution of charge carrier in nanosized semiconductor heterostructures with account for polarization effects // Computational Mathematics and Mathematical Physics. 2016. Т. 56. № 1. P. 161−172.
- Kohn W., Sham L.J. // Phys. Rev. 1965. 140. A1133.