350 rub
Journal Highly available systems №4 for 2015 г.
Article in number:
Methods for improving the reliability of combinational microelectronic curcuits based on multiinterval timing analysis
Authors:
S.V. Gavrilov - Dr. Sc. (Eng.), Professor, Head of Department of Digital Circuit Design Automation, Institute for design problems in microelectronics RAS (Moscow). E-mail: sergey_g @ippm.ru G.A. Ivanova - Junior Research Scientist, Department of Digital Circuit Design Automation, Institute for design problems in microelectronics RAS (Moscow). E-mail: pirutina_g@ippm.ru D.I. Ryzhova - Junior Research Scientist, Department of Digital Circuit Design Automation, Institute for design problems in microelectronics RAS (Moscow). E-mail: ryzhova_d@ippm.ru A.L. Stempkovsky - Dr. Sc. (Eng.), Academic of RAS, Professor, Director of Institute for design problems in microelectronics RAS (Moscow). E-mail: stal09@ippm.ru
Abstract:
With the reduction of transistors size to nanometer scale new problems, which were not solved in the existing CAD systems, are ap-peared. To improve the reliability of circuits new approaches are being developed. In some tasks, such as peak current estimation, switching interval search in the analysis of noise immunity, characterization and IP block models generation, a search of all possible switching intervals is required. Particularly, in the noise analysis estimation, the time interval intersection for aggressor and victim nodes switching is calculated. For IR-drop estimation, the analysis of simultaneous switching of large gate sets is required. In this paper the method of IP blocks performance analysis is provided. It increases the accuracy of the delay intervals analysis at the logical level in comparison with the classical methods of static timing analysis by sharing propagation of delay intervals and Boolean information about vectors of switching for which the delay is achievable.
Pages: 69-76
References

 

  1. Robert B.Hitchcock Sr. Timing Verification and the Timing Analysis program // Proceedings of the 19th conference on Design automation. January 1982. P. 594−604.
  2. Gavrilov S.V., Ryzhova D.I. Metod ocenki pikovogo toka na logicheskom urovne s uchetom odnovremennogo perekljuchenija vkhodov // Sb. nauchn. tr. VIVseros. nauchno-tekhnich. konf. «Problemy razrabotki perspektivnykh mikro- i nanoehlektronnykh sistem 2014» / Pod obshhejj red. A.L. Stempkovskogo. M.: IPPM RAN. 2014. S. 37−42.
  3. Gavrilov S.V., Ryzhova D.I., Stempkovskijj A.L. Metody povyshenija tochnosti ocenki pikovogo toka na logicheskom urovne na osnove analiza logicheskikh korreljacijj // Izvestija JUFU. Tekhnicheskie nauki. 2014. № 7. S. 66−75.
  4. Gavrilov S.V., Ryzhova D.I., Stempkovskijj A.L. Problema analiza pikovogo toka pri proektirovanii sverkhbolshikh integralnykh skhem na logicheskom urovne i sovremennye metody ee reshenija // Informacionnye tekhnologii. 2014. № 6. S. 58−63.
  5. Glebov A., Gavrilov S., Blaauw D. False noise analysis using resolution method // ISQED 2002. P. 437−442.
  6. Gavrilov S.V., Glebov A.L., Stempkovskijj A.L. Metody logicheskogo i logiko-vremennogo analiza cifrovykh KMOP SBIS. M.: Nauka. 2007. 220 c.
  7. Gavrilov S.V. Metody analiza logicheskikh korreljacijj dlja SAPR cifrovykh KMOP SBIS. M.: Tekhnosfera. 2011. 136 c.
  8. Gavrilov S.V., Gudkova O.N., Stempkovskiy A.L. The Analysis of the Performance of Nanometer IP-blocks Based on Interval Simulation // Russian Microelectronics. 2013. V. 42. № 7. P. 396−402.
  9. Gavrilov S.V., Pirjutina G.A., SHHelokov A.N. Metod intervalnykh ocenok zaderzhek i vykhodnykh frontov bibliotechnykh ehlementov nanometrovykh KMOP-skhem // Izvestija JUFU. Tekhnicheskie nauki. 2012. № 7 (132). S. 70−76.
  10. SHaryjj S.P. Konechnomernyjj intervalnyjj analiz. Institut vychislitelnykh tekhnologijj SO RAN. 2010. 602 s.
  11. Brown F.M. Boolean reasoning. The logic of Boolean equations // Boston; Dordrecht; London: Kluwer Academic Publishers. 1990. 273 p.
  12. Kuo Y.M., Chang Y.L., and Chang S.C. Efficient Boolean Characteristic Function for Fast Timed ATPG // In Proc. InternationalConferenceonComputer-AidedDesign. 2006. P. 96−99.
  13. Bryant R.E. Graph-Based Algorithms for Boolean Function Manipulation // IEEE Transactions on Computers. 1986. V. 35. № 8. P. 677−691.
  14. Gavrilov S.V., Gudkova O.N., Pirjutina G.A. Metod analiza bystrodejjstvija ventilejj s uchetom odnovremennogo perekljuchenija vkhodov // Sb. nauch. trudov VVseros. nauchno-tekhnich. konf. «Problemy razrabotki perspektivnykh mikro- i nanoehlektronnykh sistem 2012» / Pod obshhejj red. A.L. Stempkovskogo. M.: IPPM RAN. 2012. S. 119−124.
  15. Brglez F. and Fujiwara H. A neutral netlist of 10 combinatorial benchmark circuits and a target translator in FORTRAN // In Proc. IEEEInt. Syrup. CircuitsandSystems. June 1985. P. 663−698.