350 rub
Journal Highly available systems №1 for 2009 г.
Article in number:
Development of human iris identification information technology using hermite transform
Authors:
E.A. Pavelyeva, A.S. Krylov, O.S. Ushmaev
Abstract:
Local iris recognition information technology using Hermite transform has been developed. The method is based on sign analysis of convolutions of iris intensity function with Hermite functions
Most informative indexes (m,n) of Hermite functions and the identification criterion were justified. The developed information technology includes iris localization and normalization modules, detection of iris areas non-occluded by eyelids and eyelashes and iris rotation angle calculation.
At the comparison (identification) stage binary matrixes for each index (m,n) of the fixed set are compared. As an image comparison metrics we use Hamming distance (Ham(L)) between corresponding downscaled image matrixes. Hamming distance counts the number of nonzero values in the difference of the matrixes. At first we sort the images from the database using value Ham(L1,0)+ Ham(L2,0) as the distance to the input image. Then we do the same procedure using Ham(L1,0)+ Ham(L2,1) value. If the nearest person from the database is the same for both distances the verification is positive, else the algorithm asks the user to make a photo of eye once again.
A justification of the chosen index set has been performed. To make the method more robust to eye rotations we also performed limited pixel cyclical shifts for each identification procedure. As the algorithm result we find the best matching iris owner from the database.
The proposed algorithm has been tested with CASIA-IrisV3 database and showed good results. It is comparable with methods currently used in practice:
METHOD FAR (%) FRR (%) DATABASE
Proposed 0 0.82 CASIA-IrisV3
Proposed with post-rejection 0 0.18 CASIA-IrisV3
Tan 0.001 1.13 CASIA V1.0
Wildes 0.01 6.5
Romero-Ramirez 0 9.71 CASIA V1.0
Daugman 0 0.12 NIST (ICE-1)
Pages: 36-42
References
- DaugmanJ. High Confidence Visual Recognition of Persons by a Test of Statistical Independence // IEEE Transaction on Pattern Analysis and Machine Intelligence. November 1993. V. 15.N. 11. P. 1148−1161.
- Wildes R.P. Iris Recognition: An Emerging Biometric Technology // Proceedings of the IEEE. 1997. V. 85. N. 9. P. 1348-1363.
- Соколов И.А., Будзко В.И., Синицын И.Н. Построение информационно-телекоммуникационных систем высокой доступности // Наукоемкие технологии. 2005. №6. Т.6. Системы высокой доступности. 2005. №1. Т.1. С. 6 - 14.
- Синицын И.Н., Губин А.В., Ушмаев О.С. Метрологические и биометрические технологии и системы // История науки и техники. 2008. №7. С.41 - 44.
- Martens J.B. The Hermite transform-theory // IEEE Transactions on Acoustics, Speech, and Signal Processing. 1990. V. 38(9). P. 1595 - 1606.
- Estudillo-Romero A., Escalante-Ramirez B. The Hermite Transform: An Alternative Image Representation Model for Iris Recognition // Lecture Notes in Computer Science. 2008. N. 5197. P. 86 - 93.
- Синицын И.Н. Фильтры Калмана и Пугачева. М.: Логос. 2007.
- База данных CASIA-IrisV3. http://www.cbsr.ia.ac.cn/IrisDatabase.htm.
- Krylov A.S., Pavelyeva E.A.Iris Data Parametrization by Hermite Projection Method // GraphiCon-2007 Conference proceedings. Moscow. 2007.P. 147−149.
- Павельева Е.А., Крылов А.С. Алгоритмы предобработки изображений радужной оболочки глаза // Труды конференции GraphiCon-2008. Москва. 2008. С. 314.
- Li Ma, Tieniu Tan, Dexin Zhang, Yunhong WangLocal Intensity Variation Analisys for Iris Recognition // Pattern Recognition. 2004. V. 37. N. 6. P. 1287 − 1298.