350 rub
Journal Highly available systems №1 for 2009 г.
Article in number:
Application of superresolution method in video-based facial identification
Authors:
A.V. Nasonov, A.S. Krylov, O.S. Ushmaev
Abstract:
An application of general approach of video sequence superresolution to image enhancement is considered in this work. It is proposed to use several frames to obtain single image with a better quality instead of performing face recognition for every frame. High quality superresolution problem and fast superresolution problem are posed. General superresolution problem is mathematically modeled by a set of equations, one equation per each low resolution frame . Every equation represents a condition that an application of downsampling with taking into account the motion to reconstructed high-resolution image results in low resolution frames : where is the downsampling operator. This operator performs low-pass filtering modeled as a convolution with Gauss filter followed by decimation operator . This problem does not have an explicit solution. Another formulations are used, subject to the considered problem. The problem of high quality superresolution is posed as the error minimization problem , where . Using the norm results in sharp images. This problem is ill-posed. Regularization method based on Tikhonov regularization method is used to solve this problem. By this method an ill-posed problem is replaced with a similar well-posed problem by adding constraints. Subgradient method is used to get a numerical solution. The result of fast superresolution is a rough approximation of the solution of the minimization problem . Fast non-iterative algorithm in used in this case. Regularization algorithm of operator inversion is replaced by direct upsampling operator . In this work, upsampling operator based on Gauss filter is used. The work also proposes new multiscale method of motion estimation for consecutive frames. In this method, the motion is first estimated with downscales frames, then it is approximated more precisely for original frames using the motion estimated with downscales frames. Motion estimation is performed by Kanade-Lucas method. This method uses a representation of image using image as , where and are motion vector components. The analysis of proposed high quality superresolution method, fast superresolution method and new multiscale motion estimation method shows practical applicability of the developed methods to video surveillance problems.
Pages: 26-34
References
  1. Синицын И.Н., Губин А.В., Ушмаев О.С. Метрологические и биометрические технологии и системы // История науки и техники. 2008. №7. С.41 - 44.
  2. Ушмаев О.С., Босов А.В. Реализация концепции многофакторной биометрической идентификации в интегрированных аналитических системах // Системы высокой доступности. 2007. Т.3. № 4. С.13-23.
  3. Ушмаев О.С. Применение биометрии в аэропортах, BiometricsTTS 2007. 22 ноября2007 г. http://www.dancom.ru/rus/AIA/Archive/RUVII_BioLinkSolutions_BiometricsInAirports.pdf
  4. Ушмаев О.С. Реализации концепции многофакторной биометрической идентификации в правоохранительных системах. Интерполитех - 2007. http://www.dancom.ru/rus/AIA/Archive/RUVI_BioLinkSolutions_MultimodalBiometricsConcept.pdf.
  5. Kingsbury N. Technology Assessment: Using Biometrics for Border Security. DIANE Publishing Co. 2003.
  6. John D. Woodward Jr. «Biometrics: Facing Up to Terrorism» // The Biometric Consortium Conference 2002. Arlington. February. 2002.
  7. Синицын И.Н., Новиков С.О., Ушмаев О.С. Развитие технологий интеграции биометрической информации // Системы и средства информатики. 2004. Вып. 14. С. 5 - 36.
  8. Ушмаев О.С., Босов А.В. Реализация концепции многофакторной биометрической идентификации в интегрированных аналитических системах // Бизнес и безопасность в России. Январь 2008. №49. С. 104 - 105.
  9. Face Recognition Vendor Test, http://www.frvt.org/.
  10. Face Recognition Vendor Test  2006. http://frvt.org/FRVT2006/.
  11. Уфимцев Ю. С., Зинина А. М., Виниченко И. Ф., Зинин А. М., Снетков В. А., Зинин А.М., Зимина А. М., Зинин А.Ма.М., Зимина А.М, Зинина А.М. Портретная экспертиза / под ред. д.ю.н., проф. А.М. Зинина. М.: Право и Закон. Экзамен. 2004.
  12. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М. 1979.
  13. Sina Farsiu, Dirk Robinson, Michael Elad, Peyman Milanfar. Fast and Robust Multi-Frame Super-Resolution // IEEE Trans. On Image Processing. October 2004.V. 13. N. 10. P. 1327 - 1344.
  14. Boyd S., Xiao L., Mutapcic A. Subgradient methods. Lecture notes of EE392o. Stanford University. 2003.
  15. Krylov A.S., Nasonov A.V., Sorokin D.V. Face image super-resolution from video data with non-uniform illumination // Proc. Int. Conf. Graphicon2008. P. 150-155.
  16. Lin F., Fookes C., Chandran V., Sridharan S. Investigation into Optical Flow Super-Resolution for Surveillance Applications. - Proceedings of APRS Workshop on Digital Image Computing. February 2005. P. 73-78.
  17. Krylov A., Nasonov A. Fast Super-Resolution from video data using optical flow estimation // Proceedings of IEEE ICSP'08 (Beijing). P. 853 - 856.
  18. Krylov A., Nasonov A., Ushmaev O. Image Super-Resolution using Fast Deconvolution // Proceedings of 9th Conference on Pattern Recognition and Image Analysis: New Information Technologies. Nizhni Novgorod. 2008. V. 1, N. 2. P. 362 - 364.
  19. Sung Won Park, Marios Savvides Breaking the limitation of manifold analysis for super-resolution of facial images // IEEE Int. Conf. on Acoustics, Speech and Signal Processing. April 2007. V. 1. P. 573 - 576.
  20. Jiangang Yu. Super-resolution and Facial Expressions for Face Recognition in Video, PhD Thesis. University of California. Riverside. 2007.
  21. Lucas B.D., Kanade T. An iterative image registration technique with an application to stereo vision // Proc. of Imaging understanding workshop. 1981. P. 121-130.
  22. Lukin S., Krylov A.S., Nasonov A.V. Image Interpolation by Super-Resolution // Proc. Int. Conf. Graphicon2006. P. 239-242.