350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2025 г.
Article in number:
Predictive analysis of electric propulsion application in deep space missions
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202504-03
UDC: 629.7.036.7
Authors:

D.D. Boriskin1, A.P. Plokhikh2

1,2 Moscow Aviation Institute (National Research University) (Moscow, Russia)

1 ddboriskin@gmail.com, 2 plokhikh2001@mail.ru

Abstract:

In recent decades, there has been significant growth of interest in space research aimed at studying deep space and near-Earth interplanetary space. As scientific tasks become more complex and numerous, the problem of extending the active life of spacecraft and optimizing its mass becomes particularly urgent. One promising approach to solving this problem is the use of electric propulsion systems. A review of current and future space missions aimed at deep space exploration by spacecraft with electric propulsion systems to forecast future developments. A comprehensive analysis of deep space exploration missions using electric propulsion systems was conducted. Based on the analysis, the current state and trends in the use of electric propulsion systems in deep space exploration missions were determined. The presented analysis of missions and spacecraft performance may be useful for technical specialists in the development and justification of new approaches to the design and use of spacecraft equipped with electric propulsion systems in the tasks of deep space exploration.

Pages: 22-39
For citation

Boriskin D.D., Plokhikh A.P. Predictive analysis of electric propulsion application in deep space missions. Electromagnetic waves and electronic systems. 2025. V. 30. № 4. P. 22−39. DOI: https://doi.org/10.18127/j15604128-202504-03 (in Russian)

References
  1. Gusev Yu.G., Pilnikov A.V. The role and place of electric rocket engines in the Russian space program. Proceedings MAI. 2012. № 60. P. 22. (in Russian)
  2. Vazhenin N.A., Obukhov V.A., Plokhikh A.P., Popov G.A. Electric rocket engines of spacecraft and their effect on radio systems of space communications. Moscow: FIZMATLIT. 2013. 432 p. ISBN 978-5-9221-1410-3. (in Russian)
  3. Hasegawa S., Muller T.G., Kawakami K., Kasuga T., Wada T., ITA Y., Takato N., Terada H., Fujiyoshi T., Abe M. Albedo, Size, and Surface Characteristics of Hayabusa-2 Sample-Return Target 162173 1999 JU3 from AKARI and Subaru Observations. Publications of the Astronomical Society of Japan. 2008. V. 60. № SP2. P. S399–S405. DOI 10.1093/pasj/60.sp2.S399.
  4. Schedule | News | JAXA HAYABUSA2 PROJECT. [Electronic resource] – Access mode: https://www.hayabusa2.jaxa.jp/en/news/ schedule/, date of reference 04.05.2025.
  5. Watanabe S., Tsuda Yu., Yoshikawa M., Tanaka S., Saiki T., Nakazawa S. Hayabusa2 Mission Overview. Space Science Reviews. 2017. V. 208. № 1. P. 3–16. DOI 10.1007/s11214-017-0377-1.
  6. Tsuda Y., Yoshikawa M., Abe M., Minamino H., Nakazawa S. System design of the Hayabusa 2 – Asteroid sample return mission to 1999 JU3. Acta Astronautica. 2013. V. 91. P. 356–362. DOI10.1016/j.actaastro.2013.06.028.
  7. Benkhoff J., Novara M., Reininghaus U., Stramaccioni D., Sutherland O., Zender J., Murakami G., Baumjohann W., Besse S., Casale M., Bunce E., Cremosese G., Glassmeier K.-H., Heyner D., Hayakawa H., Saito Y., Hiesinger H., Huovelin J., Hussmann H., Iafolla V. Milillo A., Orsini S., Santoli F., Iess L., Kasaba Y., Kobayashi M., Mitrofanov I.G., Montagnon E., Quemerais E., Thomas N., Yoshikawa I. BepiColombo – Mission Overview and Science Goals. Space Science Reviews. 2021. V. 217. № 8. P. 90. DOI 10.1007/s11214-021-00861-4.
  8. Mangano V., Milillo A., Grassi D., Peron R., Lucente M., Massetti S., Alberti T., Santoli F., Orsini S., Volwerk M., Varsani A., Plaschke F., Lichtenegger H., Laky G., Baumjohann W., Dósa M., Madár Á., Erdős G., Fränz M., Krüger H. Oliveira J.S., Zender J., Benkhoff J., Chaufray J.Y., Quemerais E., Murakami G., Saito Y., De La Fuente S., Iwai K., Miyoshi Y., Kasaba Y., Kobayashi M., Kilpua E.K.J., Huovelin J., Plainaki C., Mckenna-Lawlor S., Jackson B.V., Odstrcil D., Hirai T., Vainio R., Jarvinen R., Belyaev D., Ivanovski S.L., Dong C., Besse S., Cornet T., Lee Y.J., Heyner D., Slavin J.A., Zhong J., Aizawa S., Schmidt C.A., Barabash S., Iess L., Montagnon E., Hiesinger H., Helbert J., Maturilli A., Kozyrev A.S., Mitrofanov I.G., Moissl R., Quarati F. BepiColombo Science Investigations During Cruise and Flybys at the Earth, Venus and Mercury. Space Science Reviews. 2021. V. 217. № 1. P. 27. DOI 10.1007/s11214-021-00797-9.
  9. Lewis R. A. et al. Qualification of the T6 Thruster for BepiColombo. Joint Conference of the 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference, and 6th Nano-satellite Symposium. 2015.
  10. Lord P., Tilley S., Oh D.Y., Goebel D., Polanskey C., Snyder S., Carr G., Collins S.M., Lantoine G., Landau D., Elkins-Tanton L. Psyche: Journey to a Metal World. IEEE Aerospace Conference Proceedings. 2017. P. 7943771. DOI 10.1109/AERO.2017. 7943771.
  11. Zuber M.T., Park R.S., Elkins-tanton L.T., Bell J.F., Bruvold K.N., Bercovici D., Bills B.G., Binzel R.P., Jaumann R., Marchi S., Raymond C.A., Roatsch T., Wang Ch.C., Weiss B.P., Wenkert D., Wieczorek M.A. The Psyche Gravity Investigation. Space Science Reviews. 2022. V. 218. № 8. P. 1–12. DOI 10.1007/s11214-022-00905-3.
  12. Hart W., Brown G.M., Collins S.M., De Soria-Santacruz Pich M., Fieseler P., Goebel D., Marsh D., Oh D.Y., Snyder S., Warner N., Whiffen G., Elkins-Tanton L.T., Bell J.F., Lawrence D.J., Lord P., Pirkl Z. Overview of the spacecraft design for the Psyche mission concept. IEEE Aerospace Conference Proceedings. 2018. P. 1-20. DOI 10.1109/AERO.2018.8396444.
  13. Ferreira J.L., Martins A.A., Miranda R.A. et al. Development of a Solar Electric Propulsion System for the First Brazilian Deep Space Mission. 35th Electric Propulsion Conference. IEPC-2017-166. Georgia Institute of Technology. 2017. 14 p.
  14. Walker R. et al. Miniaturized Asteroid Remote Geophysical Observer (M-ARGO): a stand-alone deep space CubeSat system for low-cost science and exploration missions. 6th Interplanetary CubeSat Workshop. 2017. V. 30. № 5.
  15. Boriskin D.D., Plokhikh A.P., Vazhenin N.A. State of the art and prospects for the development of onboard radio systems for deep space communications. Electromagnetic waves and electronic systems. 2024. V. 29. № 3. P. 97−109. DOI 10.18127/j15604128-202403-10. (in Russian)
  16. Walker R., Binns D., Bramanti C., Casasco M., Concari P., Izzo D., Feili D., Fernandez P., Fernandez J.G., Hager P., Koschny D., Pesquita V., Wallace N., Carnelli I., Khan M., Scoubeau M., Taubert D. Deep-space CubeSats: thinking inside the box. Astronomy & Geophysics. 2018. V. 59. № 5. P. 5.24–5.30. DOI 10.1093/astrogeo/aty232
  17. Herman D.A., Gray T., Johnson I., Kerl T., Lee T., Silva T. The application of advanced electric propulsion on the NASA power and propulsion element (PPE). International Electric Propulsion Conference. 2019. № GRC-E-DAA-TN72776.
  18. Dendy R., Zeleznikar D.J., Zemba M.J. NASA lunar exploration – gateway's power and propulsion element communications links. 2021.
  19. Cataldo G., Affentranger L., Clement B.G., Glavin D.P., Hughes D.W., Hall J., Sarli B., Szalai Ch.E. The planetary protection strategy of Mars Sample Return’s Earth Return Orbiter mission. Journal of Space Safety Engineering. 2024. V. 11. № 2. P. 374–384. DOI 10.1016/ j.jsse.2024.04.013.
  20. Rubinsztejn A., Sood R., Laipert F. Expected thrust fraction: resilient trajectory design applied to the Earth return orbiter. 2021.
  21. Sutherland O. et al. Mars Sample Return-Earth Return Orbiter: ESA's next Interplanetary Electric Propulsion Mission Concept. 36th International Electric Propulsion Conference. 2019.
  22. Sarli B., Horikawa M., Yam C.H., Kawakatsu Y., Yamamoto T. DESTINY+ trajectory design to (3200) Phaethon. The Journal of the Astronautical Sciences. 2018. V. 65. P. 82–110. DOI 10.1007/s40295-017-0117-5.
  23. Ozaki N., Yamamoto T., Gonzalez-Franquesa F., Gutierrez-Ramon R., Pushparaj N., Chikazawa T., Tos D.A.D., Çelik O., Marmo N., Kawakatsu Ya., Arai T., Nishiyama K., Takashima T. Mission design of DESTINY+: Toward active asteroid (3200) Phaethon and multiple small bodies. Acta Astronautica. 2022. V. 196. P. 42–56. DOI 10.1016/j.actaastro.2022.03.029.
  24. Ishibashi K. et al. Telescopic camera for Phaethon (TCAP) and multiband camera for Phaethon (MCAP) to be installed on the Destiny+ spacecraft. 42nd COSPAR Scientific Assembly. 2018. V. 42. P. B1. 1-63-18.
  25. Jedrey T., Lock R., Matsumoto M. Conceptual Studies for the Next Mars Orbiter (NeMO). 2016.
  26. NASA is counting on long-lived Mars orbiter lasting another decade – Spaceflight Now. [Electronic resource] – Access mode: https://spaceflightnow.com/2018/04/09/nasa-is-counting-on-long-lived-mars-orbiter-lasting-another-decade/, date of reference 05.05.2025.
  27. Herman D.A. NASA's Evolutionary Xenon Thruster (NEXT) Project Qualification Propellant Throughput Milestone: Performance, Erosion, and Thruster Service Life Prediction after 450 kg. 57th Joint Army-Navy-NASA-Air Force (JANNAF) Propulsion Meeting. 2010.
    № E-17447.
  28. JSC SSC "Keldysh Center". [Electronic resource] – Access mode: https://keldysh-space.ru/nasha-deyatelnost/raketno-kosmicheskaya-deyatelnost/kosmicheskaya-energetika/yadernaya-energetika/, date of reference 05.05.2025. (in Russian)
  29. Lovtsov A.S., Selivanov M.Yu., Tomilin D.A., Shagaida A.A., Shashkov A.S. The main results of electric propulsion development at Keldysh research centre. Proceedings of the Russian Academy of Sciences. Energy. 2020. № 2. P. 3–15. DOI 10.31857/S00023310200 20077. (in Russian)
Date of receipt: 20.05.2025
Approved after review: 02.06.2025
Accepted for publication: 26.06.2025