350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2025 г.
Article in number:
Application of mathematical methods to determine the signal arrival under the influence of a background field (illumination field) in ground penetrating radar sounding
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202503-03
UDC: 535.2
Authors:

Yа.V. Savvateev1, S.V. Ilyakhin2, B.A. Kornilov3

1 Institute of Physics of the Earth named after O.Yu. Schmidt (Moscow, Russia)

2 Russian State Geological Prospecting University named after Sergo Ordzhonikidze (Moscow, Russia)

3 Scientific and Technical Cooperative "Diogen" (Moscow, Russia)

1 savvateev-yar@yandex.ru, 2 isv11@mail.ru, 3 ntkdiogen48@mail.ru

Abstract:

Under the influence of the background field during GPR sounding, the temporal resolution of the re-cording increases, which facilitates the search tasks. To determine the presence of anomalies associated with the presence of local objects, it is necessary to have an objective criterion for mapping search objects. One of the methods for solving such a problem is the Wiener deconvolution method, which consists in the operation of convolution of traces obtained under standard conditions of georadar-sensing, and obtained under the additional action of a background field (backlight field).

Pages: 12-21
For citation

Савватеев Я.В., Иляхин С.В., Корнилов Б.А. Применение математических методов для определения вступления сигнала под действием фонового поля (поля подсветки) при георадиолокационном зондировании // Электромагнитные волны и электронные системы. 2025. Т. 30. № 3. С. 12−21. DOI: https://doi.org/10.18127/j15604128-202503-03

References
  1. Nabatov V.V., Voznesensky A.S. Georadar detection of voids at the soil-lining interfacein subway tunnels. Mining Journal. 2015. № 2. P. 15–20. DOI 10.17580/gzh.2015.02.03. (in Russian)
  2. Chizh M.A. Development of methods for processing radiographic data for non-destructive testing of dielectric coatings: dis. ... Candidate of Physical and Mathematical Sciences. Moscow: Bauman Moscow State Technical University. 2018. 146 p. (in Russian)
  3. Bardin B.V. Way deconvolution spectrometer information and detection of spectral peaks. Scientific instrumentation. 2017. V. 27. № 2. P. 75–82. DOI 10.18358/np-27-2-i7582. (in Russian)
  4. Weinstein L.A. Propagation of impulses. Successes of physical sciences. 1976. V. 118. № 2. P. 339–367. DOI 10.3367/UFNr.0118. 197602h.0339. (in Russian)
  5. Kyuregyan A.S. Picosecond switching of high-voltage reverse-biased p+-n-n+ structures to the conductive state by pulsed light. Semiconductors. 2014. V. 48. № 12. P. 1645–1652. (in Russian) 
  6. Goodman J. Introduction to Fourier Optics. Transl. from English. Ed. by G.I. Kosourov. Moscow: Mir. 1970. 182 p. (in Russian) 
  7. Mesyac G.A., Nasibov A.S., Kremnev V.V. Formation of nanosecond pulses of high voltage. Moscow: Energiya. 1970. 152 p. (in Russian)
  8. Sheen D.M., McMakin D.L., Hall T.E. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Transactions on Microwave Theory and Techniques. 2001. V. 49. № 9. P. 1581–1592. DOI 10.1109/22.942570.
  9. Soumekh M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Transactions on Signal Processing. 1991. V. 39. № 9. P. 2044–2055. DOI 10.1109/78.134436.
  10. Slichenko M.P. Theorems on the representation of the integral of a periodic function with finite Fourier spectrum as a finite sum. Radiotekhnika. 2023. V. 87. № 5. P. 134−142. DOI 10.18127/j00338486-202305-14. (In Russian)
  11. Boyer A.L., Hirsch P.M., Jordan J.A., Lesem L.B., Van Rooy D.L. Reconstruction of Ultrasonic Images by Backward Propagation. Acoustical Holography. 1971. V. 3. P. 333–348. DOI 10.1007/978-1-4615-8210-6_18.
  12. Brandsberg-Dahl S., Chemingui N., Valenciano A., Ramos-Martinez J., Lingyun Q. FWI for model updates in large-contrast media. The Leading Edge. 2017. V. 36. № 1. P. 81–87. DOI 10.1190/tle36010081.1.
  13. Ruths T., Zawila J., Fluckiger S.D., Miller N.J., Gibson R.G. New methodology merg-ing seismic, geologic, and engineering data to predict completion performance. The Leading Edge. 2017. V. 36. № 3. P. 220–226. DOI 10.1190/tle36030220.1.
  14. Patent for invention RUS2707419 dated 28.02.2019. A method of georadiolocation sensing and a device for its implementation. Savvateev Ya.V., Kornilov B.Ya. (in Russian) 
Date of receipt: 25.04.2025
Approved after review: 26.05.2025
Accepted for publication: 02.06.2025