Pham Duc Huy1, Nguyen Van Cuong2, A.V. Nikolaev3, A.Yu. Voloshin4
1–3 Moscow Technical University of Communications and Informatics (Moscow, Russia)
3,4 Mechanical Engineering Research Institute of the Russian Academy of Sciences
1 d.h.fam@edu.mtuci.ru, 2 v.k.nguen@edu.mtuci.ru, 3 alarmoren@yandex.ru, 4 vau@smartlightlab.ru
In contemporary society, the usage of electronic explosive devices in acts of terrorism presents a significant peril to the well-being and employment of the civilian populace. Electronic explosive devices are improvised constructions made from readily accessible materials and explosives, which may be remotely ignited using radio equipment and cellphones. This technology enables terrorists to selectively target civilian objects and vital infrastructure, resulting in widespread fear, devastation, and loss of human life. Some instances of such attacks include detonations at transportation hubs, retail complexes, and athletic competitions. To address this danger, a comprehensive set of actions is necessary, such as enhancing technologies for identifying and rendering electronic explosive devices ineffective, enforcing stricter laws and broadening police operations, and bolstering global collaboration in the realm of counterterrorism. Nevertheless, the ongoing advancement of electronic technology and the emergence of new terrorist strategies underscore the importance of enhancing technologies to combat terrorist activities. A current urgent objective is to ascertain the angular coordinates of electronic explosive devices, which are objects with low contrast and non-linear search characteristics, in the presence of radio signal reflections off the Earth's surface. An approach used to ascertain the coordinates of objects is the radio direction finding method. An important aim of this work is to analyze and contrast radio direction finding techniques for detecting the angular location of a nonlinear search object. This will be achieved by utilizing a nonlinear reconnaissance radar station that is mounted in a secure vehicle.
Pham Duc Huy, Nguyen Van Cuong, Nikolaev A.V., Voloshin A.Yu. Comparison of methods for determining the angular coordinates of objects in the ground using a nonlinear radar station. Electromagnetic waves and electronic systems. 2024. V. 29. № 5. P. 47−54. DOI: https://doi.org/10.18127/j15604128-202405-07 (in Russian)
- Fam D.X., Nguen V.K., Nikolaev A.V. Radioe`lektronny`e sredstva voenno-inzhenernoj sluzhby` v`etnamskoj narodnoj armii i perspektiva ix razvitiya. Trudy` Severo-Kavkazskogo filiala Moskovskogo texnicheskogo universiteta svyazi i informatiki. 2023. № 1. S. 74–79.
- Grin` I.V., Ershov R.A., Morozov O.A., Fidel`man V.R. Ocenka koordinat istochnika ra-dioizlucheniya na osnove resheniya linearizovannoj sistemy` uravnenij raznostno-dal`nomernogo metoda. Izvestiya vy`sshix uchebny`x zavedenij. Povolzhskij region. Texnicheskie nauki. 2014. № 4 (32). S. 71–81.
- Voroshilin E.P., Mironov M.V., Gromov V.A. Opredelenie koordinat istochnikov radio-izlucheniya raznostno-dal`nomerny`m metodom s ispol`zovaniem gruppirovki nizkoorbital`ny`x maly`x kosmicheskix apparatov. Doklady` TUSURa. 2010. № 1 (21). Ch. 2. S. 23–28.
- Grishin Yu.P., Kazarinov Yu.M., Ipatov P.V. Radiotexnicheskie sistemy`. M.: Vy`sshaya shkola. 1990. 496 s.
- Gusejnov M.Ya., Lepexina T.A., Nikolaev V.I. Uluchshenie razreshayushhej sposobnosti po dal`nosti dozornoj RLS v rezhimax RSA metodom mezhperiodnogo rasshireniya spectra. Uspexi sovremennoj radioe`lektroniki. 2015. № 5. S. 6–12.
- Nguen V.K., Fam D.X., Nikolaev A.V. Radiodetektirovanie signala, rasseyannogo nelinejny`m ob``ektom, dlya bezopasny`x mashin / XXXV Mezhdunarodnaya innovacionnaya konferenciya molody`x ucheny`x i studentov (MIKMUS – 2023): sb. tr. konf. Moskva, 13–14 noyabrya 2023 g. M.: Institut mashinovedeniya im. A.A. Blagonravova RAN. 2023. S. 363–370.
- Zy`ryanov Yu.T., Belousov O.A., Fedyunin P.A. Osnovy` radiotexnicheskix sistem: uchebnoe posobie. Tambov: Izd-vo FGBOU VPO «TGTU». 2011. 144 s.
- Zolotaryov I.D., Berezovskij V.A. Fazovy`e pelengatory` v usloviyax radioe`lektronnoj bor`by`. Omskij nauchny`j vestnik. 2009. № 3 (83). S. 264–268.
- Dyatlov A.P., Kul`bikayan B.X. Amplitudny`j pelengator s povy`shennoj pomexozashhishhennost`yu. Izvestiya vuzov. Severo-Kavkazskij region. Ser.: Texnicheskie nauki. 2004. № 2. S. 46–49.
- Kozlov S.V. Pelengacionny`e antenny`e sistemy` s prostranstvennoj kompensaciej pomex: ucheb.metod. posobie. Minsk: BGUIR. 2019. 158 s.
- Denisov V.P., Dubinin D.V. Fazovy`e radiopelengatory`. Tomsk: Tomskij gosudarstvenny`j universitet sistem upravleniya i radioe`lektroniki. 2002. 251 s.
- Bessonova E.V., Irxin V.I. Metod obrabotki signala RLS planovogo obzora, obespechiva-yushhij povy`shennuyu razreshayushhuyu sposobnost` po azimutu. Zhurnal Radioe`lektroniki. 2016. № 4.