350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2024 г.
Article in number:
Study heavily icy deposits with recurrent ice wedges by ground penetrating radar
Type of article: scientific article
DOI: 10.18127/j5604128-202405-04
UDC: 550.8+551.341
Authors:

D.E. Edemsky1, V.E. Tumskoy2, I.V. Prokopovich3

1,3 Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (Moscow, Troitsk, Russia)
2 Melnikov Permafrost Institute, SB RAS (Yakutsk, Russia)
1 deedemsky@gmail.com; 2 vtumskoy@gmail.com; 3 prokop@izmiran.ru

Abstract:

Highly icy deposits of the ice complex are widespread in the territory of Yakutia. They have been studied for a long time, but recently their possible response to climate warming has become especially important. Despite the existence of natural outcrops, where they are studied by geological methods, geophysical methods are currently insufficiently used. The latter ones can help in studying the spatial structure of ice complex deposits, creating their three-dimensional models and detailed study of their structure at closed areas. The article presents the results of electromagnetic sounding of ice wedges in highly icy deposits of the ice complex on a yedoma in the lower reaches of the Indigirka River. The results of preliminary measurements using antenna systems of 150 and 250 MHz are presented. The obtained GPR data was assessed and a 3D model of the ice complex was built to a depth of 15 m. Interpretation of the results of GPR sounding made it possible to establish the spatial position of ice wedges and the sediments that host them. It was also possible to connect the veins with depressions in the relief outside the studied area and establish some connection in the deposits of the ice complex in an area of 14–16 m. 3D models of the structure of the environment obtained using GPR can help to identify poorly defined features and structures of permafrost rocks.

Pages: 22-28
For citation

Edemsky D.E., Tumskoy V.E., Prokopovich I.V. Study heavily icy deposits with recurrent ice wedges by ground penetrating radar. Electromagnetic waves and electronic systems. 2024. V. 29. № 5. P. 22−29. DOI: https://doi.org/10.18127/j15604128-202405-04 (in Russian)

References
  1. Romanovskij N.N. Osnovy` kriogeneza litosfery`. M.: Izd-vo MGU. 1993. 336 s.
  2. Strauss J., Laboor S., Schirrmeister L., Fedorov A.N., Fortier D., Froese D., Fuchs M., Günther F., Grigoriev M., Harden J., Hugelius G., Jongejans L.L., Kanevskiy M., Kholodov A., Kunitsky V., Kraev G., Lozhkin A., Rivkina E., Shur Y., Siegert C., Spektor V., Streletskaya I., Ulrich M., Vartanyan S., Veremeeva A., Anthony K.W., Wetterich S., Zimov N., Grosse G. Circum-Arctic Map of the Yedoma Permafrost Domain. Frontiers in Earth Science. 2021. V. 9. P. 758360. DOI: 10.3389/feart.2021.758360.
  3. Grasmueck M., Weger R., Horstmeyer H. Three-dimensional ground-penetrating radar imaging of sedimentary structures, fractures, and archaeological features at submeter resolution. Geology. 2004. V. 32. No. 11. P. 933– 936. DOI: 10.1130/G20776.1.
  4. Leucci G., De Giorgi L., Di Giacomo G., Ditaranto I., Miccoli I., Scardozzi G. 3D GPR survey for the archaeological characterization of the ancient Messapian necropolis in Lecce, South Italy. Journal of Archaeological Science: Reports. 2016 V. 7. P. 290–302. DOI: 10.1016/j.jasrep.2016.05.027.
  5. Edemsky D., Popov A., Prokopovich I. Geophysical survey of Tunnug mound periphery, Tuva, Russia. Journal of Applied Geophysics. 2021. V. 189. P. 104326. DOI: 10.1016/j.jappgeo.2021.104326.
  6. Corbeanu R., McMechan G.A., Szerbiak R.B., Soegaard K. Prediction of 3-D fluid permeability and mudstone distributions from ground-penetrating radar (GPR) attributes: Example from the Cretaceous Ferron Sandstone Member, east-central Utah. Geophysics. 2002. V. 67. No. 5. P. 1495–1504. DOI:10.1190/1.1512794.
  7. Kruse S., Grasmueck M., Weiss M., Viggiano D. Sinkhole structure imaging in covered Karst terrain. Geophysical Research Letters. 2006. V. 33. P. L16405. DOI: 10.1029/2006GL026975.
  8. Green A., Gross R., Holliger K., Horstmeyer H., Baldwin J. Results of 3-D georadar surveying and trenching the San Andreas Fault near its northern landward limit. Tectonophysics. 2003. V. 368. P. 7–23. DOI: 10.1016/S0040-1951(03)00147-1.
  9. Munroe J.S., Doolittle J.A., Kanevskiy M.Z., Hinkel K.M., Nelson F.E., Jones B.M., Shur Y., Kimble J.M. Application of ground penetrating radar imagery for three-dimensional visualisation of near-surface structures in ice-rich permafrost, Barrow, Alaska. Permafrost and Periglacial Processes. 2007. V. 18. P. 309–321. DOI: 10.1002/ppp.594.
  10. Doolittle J., Nelson F. Characterising relict cryogenic macrostructures in mid-latitude areas of the USA with three-dimensional ground-penetrating radar. Permafrost and Periglacial Processes. 2009. V. 20. P. 257–268. DOI:10.1002/ppp.644.
  11. Schennen S., Tronicke J., Wetterich S., Allroggen N., Schwamborn G., Schirrmeister L. 3D Ground-Penetrating Radar Imaging of Ice Complex Deposits in Northern East Siberia. Geophysics. 2016. V. 81. No. 1. P. WA195–WA202. DOI:10.1190/geo2015-0129.1.
  12. Popov A.V., Prokopovich I.V., Edemskij D.E., Morozov P.A., Berkut A.I. Glubinny`j georadar: principy` i primenenie. E`lektromagnitny`e volny` i e`lektronny`e sistemy`. 2018. T. 23. № 4. S. 28–36.
  13. Armand N.A., Lukin D.S., Chubinskij N.P. Sovremenny`e problemy` podpoverxnostnoj radiolokacii / Konspekt lekcij «Sverxshiro­kopolosny`e sistemy` v radiolokacii i svyazi». Murom: Izd.-pol. centr MI VlGU. 2003. S. 92–107.
  14. Edemskij D.E., Tumskoj V.E., Ovsyuchenko A.N. Georadiolokacionnoe zondirovanie otlozhenij v predelax degradiruyushhego poligonal`nogo mikrorel`efa v Arktike. Kriosfera Zemli. 2021. T. 25. № 5. S. 55–69. DOI: 10.15372/KZ20210506.
  15. Edemskij D.E., Tumskoj V.E., Prokopovich I.V. Georadarnoe obsledovanie arkticheskix poligonal`nozhil`ny`x struktur. Geologiya i geofizika. 2024. T. 65. № 6. S. 886–898. DOI: 10.15372/GIG2023186.
Date of receipt: 02.08.2024
Approved after review: 13.08.2024
Accepted for publication: 20.09.2024