350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2024 г.
Article in number:
State of the art and prospects for the development of onboard radio systems for deep space communications
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202403-10
UDC: 629.783
Authors:

Boriskin D.D.1, A.P. Plokhikh2, N.A. Vazhenin3

1–3 Moscow Aviation Institute (National Research University) (Moscow, Russia)

1 ddboriskin@gmail.com, 2 plokhikh2001@mail.ru, 3 vnamail@mail.ru

Abstract:

Currently, due to the rapid exploration of interplanetary space, more and more missions are being sent to deep space, and they promise to generate an exponentially increasing amount of data in the form of complex scientific measurements, high-resolution images and video. As a response to these challenges, scientists' attention is focused on the possibilities of laser, or optical, communication due to its potential to exceed the bandwidth of radio channels. And although broadband laser communication for near-Earth orbit and satellites in lunar orbit has been verified, deep space creates new problems for it, which will not soon allow abandoning the radio range. Therefore, this article discusses both the results achieved and the prospects for using the radio band in promising deep space communication systems.

The purpose of the work was to assess the current state and prospects for the development of onboard deep-space radio communication systems.

Based on the analysis of performance of foreign space-based transponders, the current state and prospects for the development of on-board radio systems for deep space communications are determined. The frequency ranges of space communications are considered, predictive estimates for the development of signal-code structures are obtained and the prospects for using various modulation methods are defined. The SDST transponder application is considered in detail by the example of telecommunications unit of the Mars Reconnaissance Orbiter (MRO) data-relay satellite.

The proposed forecast estimates can be used in the development of radio systems for deep space communications.

Pages: 97-109
For citation

Boriskin D.D., Plokhikh A.P., Vazhenin N.A. State of the art and prospects for the development of onboard radio systems for deep space communications. Electromagnetic waves and electronic systems. 2024. V. 29. № 3. P. 97−109. DOI: https://doi.org/10.18127/ j15604128-202403-10 (in Russian)

References
  1. Vazhenin N.A., Obukhov V.A., Plokhikh A.P., Popov G.A. Electric rocket engines of spacecraft and their influence on radio systems of space communications. M.: FIZMATLIT. 2013. 432 p. ISBN 978-5-9221-1410-3. (in Russian)
  2. Semin A.Yu., Skopinova A.V., Pleshanov A.N. Analysis of design solutions used in the design of onboard recorders of space global monitoring systems. Radiotekhnika. 2023. V. 87. № 4. P. 32−35. DOI 10.18127/j00338486-202304-05. (In Russian)
  3. Chen C.C., Shambayati S., Makovsky A., Taylor F.H., Herman M.I., Zingales S.H. Small Deep Space Transponder (SDST) DS1 Technology Validation Report. [Electronic resource] – Access mode: https://pds-smallbodies.astro.umd.edu/holdings/ds1-c-micas-3-rdr-visccd-borrelly-v1.0/document/doc_Apr04/int_reports/SDST_Integrated_Report.pdf, date of reference 15.01.2024.
  4. Taylor J., Lee D.K., Shambayati S. Mars Reconnaissance Orbiter Telecommunications. [Electronic resource] – Access mode: https://descanso.jpl.nasa.gov/DPSummary/MRO_092106.pdf, date of reference 15.01.2024.
  5. Taylor J., Hansen D. Deep Impact Flyby and Impactor Telecommunications. [Electronic resource] – Access mode: https://descan­so.jpl.nasa.gov/DPSummary/di_article_cmp20050922.pdf, date of reference 15.01.2024.
  6. Kobayashi M. Iris Deep-Space Transponder for SLS EM-1 CubeSat Missions. Small Satellite Conference. Logan, Utah. 2017. P. 1–9.
  7. Asmar S.W., Matousek S. Mars Cube One (MarCO) Shifting the Paradigm in Relay Deep Space Operation. 14th International Conference on Space Operations. 2016. DOI 10.2514/6.2016-2483.
  8. Pugh M., Jin C., Gim Y., Duan X., Bills B., Satorius E., Naidu S., Romero-Wolf A., Kuperman I., Dengler R., Kurth W. Radio Science and Astronomy via the Universal Space Transponder. [Electronic resource] – Access mode: https://www.lpi.usra.edu/opag/meet­ings/sep2017/posters/Pugh.pdf, date of reference 15.01.2024.
  9. Hayne P.O., Cohen B.A., Greenhagen B.T., Paige D.A., Camacho J.M., Sellar R.G., Reiter J. Lunar Flashlight: Illuminating the Moon's South Pole. [Electronic resource] – Access mode: https://ntrs.nasa.gov/citations/20160004067, date of reference 15.01.2024.
  10. Ricco T. BioSentinel: DNA Damage-and-Repair Experiment Beyond Low Earth Orbit. [Electronic resource] – Access mode: https://ntrs.nasa.gov/api/citations/20190001657/downloads/20190001657.pdf, date of reference 15.01.2024.
  11. McNutt L., Johnson L., Kahn P., Castillo-Rogez J., Frick A. Near-earth asteroid (NEA) scout. AIAA Space 2014 Conference and Exposition. 2014. DOI 10.2514/6.2014-4435.
  12. Duncan C., Smith A., Aguirre F. Iris Transponder – Communications and Navigation for Deep Space. 2014. DOI 2014/45593.
  13. Pugh M., Kuperman I., Aguirre F., Mojaradi H., Spurgers C., Kobayashi M., Satorius E., Jedrey T. The Universal Space Transponder: A next generation software defined radio. IEEE Aerospace Conference. Big Sky, USA. 2017. P. 1–14. DOI 10.1109/AERO.2017.7943866.
  14. Stocklin F., Pugh M., Kuperman I., Bell D., El-Nimri S., Johnson B., Huynh N., Kelly S., Nessel J., Svitak A., Williams T., Linton N., Arciaga M., Dissanayake A. Ka-band High-Rate Downlink System for the NISAR Mission. 69th International Astronautical Congress. Bremen, Germany. 2018. DOI 2014/49893.
  15. Universal Space Transponder. [Electronic resource] – Access mode: https://www.l3harris.com/all-capabilities/universal-space-tran­sponder, date of reference 18.01.2024.
  16. IMT X-BAND Transponder. [Electronic resource] – Access mode: https://www.imtsrl.it/products/x-band-transponder, date of reference 14.11.2023.
  17. Franzese V., Topputo F., Ankersen F., Walker R. Deep-Space Optical Navigation for M-ARGO Mission. The Journal of the Astronautical Sciences. 2021. V. 68. P. 1034–1055. DOI 10.1007/s40295-021-00286-9.
  18. Deep Space and Secure Transponders. [Electronic resource] – Access mode: https://www.radartutorial.eu/13.ssr/pubs/ Deep_Space_Secure_Transponders.pdf, date of reference 14.07.2023.
  19. Menzel M., Davis M., Parrish K., Lawrence J., Stewart A., Cooper J., Irish S., Mosier G., Levine M., Pitman J., Walsh G., Maghami P., Thomson S., Wooldridge E., Boucarut R., Feinberg L., Turner G., Kalia P., Bowers C. The design, verification, and performance of the James Webb Space Telescope. Publications of the Astronomical Society of the Pacific. 2023. V. 135. № 1047. P. 058002. DOI 10.1088/1538-3873/acbb9f.
  20. Delhaise F., Firre D., Ravera G., Harrison I., Rudolph A., Lorenzo G., Howard J. LISA Pathfinder and X-Band Telemetry, Telecommand and Tracking Support in Near-Earth Phase . 14th International Conference on Space Operations. 2016. DOI 10.2514/6.2016-2535.
  21. Shambayati S., Morabito D., Border J., Davarian F., Lee D., Mendoza R., Britcliffe M., Weinreb S. Mars Reconnaissance Orbiter Ka-Band (32 GHz) Demonstration: Cruise Phase Operations. SpaceOps 2006 Conference. 2006. DOI 10.2514/6.2006-5786.
  22. Edwards C.D. The Electra Proximity Link Payload for Mars Relay Telecommunications and Navigation. 54th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. 2003. DOI 10.2514/6.IAC-03-Q.3.a.06.
  23. Telecommunications Link Design Handbook. [Electronic resource] – Access mode: https://deepspace.jpl.nasa.gov/dsndocs/810-005/, date of reference 18.01.2024.
  24. Recommendation ITU-R SA.1013. Preferred frequency bands for deep-space research in the 40–120 GHz range. [Electronic resource] – Access mode: https://www.itu.int/rec/R-REC-SA.1013/en, date of reference 18.01.2024.
  25. Consultative Committee for Space Data Systems (CCSDS). Radio Frequency and Modulation Systems – Part 1: Earth Stations and Spacecraft. [Electronic resource] – Access mode: https://public.ccsds.org/Pubs/401x0b28s.pdf, date of reference 18.01.2024.
  26. Serially Concatenated Convolutional Codes – Extension (SCCC-X). Experimental specification. [Electronic resource] – Access mode: https://public.ccsds.org/Pubs/131x21olcl.pdf, date of reference 18.01.2024.
  27. Consultative Committee for Space Data Systems (CCSDS). TM Synchronization and Channel Coding – Summary of Concept and Rationale. [Electronic resource] – Access mode: https://public.ccsds.org/Pubs/130xlglels.pdf, date of reference 18.01.2024.
  28. Consultative Committee for Space Data Systems (CCSDS). TM Synchronization and Channel Coding. Recommended Standard. [Electronic resource] – Access mode: https://public.ccsds.org/Pubs/131x0b3s.pdf, date of reference 18.01.2024.
  29. Flexible Advanced Coding and Modulation Scheme for High Rate Telemetry Applications. Recommended Standard. [Electronic resource] – Access mode: https://public.ccsds.org/Pubs/131x2b2.pdf, date of reference 18.01.2024.
Date of receipt: 16.04.2024
Approved after review: 13.05.2024
Accepted for publication: 26.05.2024