350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2024 г.
Article in number:
Magnetic resonance imaging at low signal-to-noise ratio, electromagnetic interferences and hardware imperfections
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202403-04
UDC: 621.396
Authors:

A.A. Tarasova1, N.V. Anisimov2, O.S. Pavlova3, M.V. Gulyaev4, Yu.A. Pirogov5

1–5 Lomonosov Moscow State University (Moscow, Russia)

1 arina.tarasova99@mail.ru, 2 anisimovnv@mail.ru, 3 pavlova.olga@physics.msu.ru, 4 gulyaev@physics.msu.ru, 5 yupi937@gmail.com

Abstract:

The problems of magnetic resonance (MR) scanning at low signal-to-noise ratio, electromagnetic interference (EMI) and equipment imperfections are considered. Attention is paid to pulsed interference, as well as interference represented by continuous radiation, the frequency and amplitude of which vary chaotically over time. Manifestations of hardware and software imperfections leading to distortions of MR images were noted. These include, in particular, failures in digital signal processing (DSP) and direct current (DC) offset correction algorithms. These imperfections can be caused by various reasons - software errors, poor shielding, aging equipment, etc. Recently, articles have appeared that recommend detecting EMI based on the analysis of electromagnetic coupling between sources and spatially distributed receiving coils connected to a multi-channel receiver, and based on this information, eliminating EMI from MRI data. If such resources are not available when conducting MRI studies, then simple procedures described in this paper can be used to minimize or suppress interference. They involve planning the research time taking into account the dynamics of the interference environment, setting an extremely narrow receiver bandwidth, as well as editing k-space points distorted by interference and hardware factors. The issues of optimizing scanning parameters are considered, in particular those related to setting the matrix size and sampling frequency, as well as practical aspects of data processing, in particular the use of apodization in k-space. The methods described in the article were used for 23Na MRI of the human head on a clinical 0.5 T scanner, the adaptation of which for detecting sodium signals was reduced only to modification of the proprietary receiving coil. It has been shown that with standard processing of MR data, images are uninformative. But if the k-space data is edited before the Fourier transform, then the information content of sodium images becomes comparable to proton ones if scans are performed with the same spatial resolution and similar tissue contrast.

Pages: 30-40
For citation

Tarasova A.A., Anisimov N.V., Pavlova O.S., Gulyaev M.V., Pirogov Yu.A. Magnetic resonance imaging at low signal-to-noise ratio, electromagnetic interferences and hardware imperfections. Electromagnetic waves and electronic systems. 2024. V. 29. № 3. P. 30−40. DOI: https://doi.org/10.18127/j15604128-202403-04

References
  1. Brown R.W., Cheng Yu-Ch.N., Haacke E.M., Thompson M.R., Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design. Ed. 2. NY: John Wiley & Sons, Inc. 2014. 944p. DOI 10.1002/9781118633953.
  2. Ibrahim M., Parrish D.J., Brown T.W.C., McDonald P.J. Decision Tree Pattern Recognition Model for Radio Frequency Interference Suppression in NQR Experiments. Sensors. 2019. V. 19. № 14. P. 3153. DOI 10.3390/s19143153.
  3. Ibrahim M., Pardi C.I., McDonald P.J., Brown T.W.C. Active elimination of radio frequency interference for improved signal-to-noise ratio for in-situ NMR experiments in strong magnetic field gradients. Journal of Magnetic Resonance. 2018. V. 287. P. 99–109. DOI 10.1016/j.jmr.2018.01.002.
  4. Timms W.E. Interference problems and screening in NMR and MRI. Journal of Medical Engineering & Technology. 1992. V. 16. № 2. P. 69–78. DOI 10.3109/03091909209021963.
  5. Andris P., Frollo I. Noise and interference in measured NMR images. Measurement. 2016. V. 77. P. 29–33. DOI 10.1016/j.meas­urement.2015.09.003.
  6. Liu Y., Leong A.T.L., Zhao Y., Xiao L., Mak H.K.F., Tsang A.C.O., Lau G.K.K., Leung G.K.K., Wu E.X. A low-cost and shielding-free ultra-low-field brain MRI scanner. Nature Communications. 2021. V. 12. № 1. P. 7238. DOI 10.1038/s41467-021-27317-1.
  7. Srinivas S.A., Cauley S.F., Stockmann J.P., Sappo C.R., Vaughn C.E., Wald L.L., Grissom W.A., Cooley C.Z. External dynamic interference estimation and removal (EDITER) for low field MRI. Magnetic Resonance in Medicine. 2022. V. 87. № 2. P. 614–628. DOI 10.1002/mrm.28992.
  8. Zhao Y., Xiao L., Liu Y., Leong A.T., Wu E.X. Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding-free MRI. NMR in Biomedicine. 2023. P. e4956. DOI 10.1002/nbm.4956.
  9. Eck B.L., Liu K., Lo W.-C., Jiang Y., Gulani V., Seiberlich N. Feasibility of Magnetic Resonance Fingerprinting on Aging MRI Hardware. Tomography. 2022. V. 8. № 1. P. 10–21. DOI 10.3390/tomography8010002.
  10. Anisimov N.V., Pavlova O.S., Agafonnikova A.G., Kosenkov A.V., Fomina D.V. Multinuclear Applications on 0.5T Magnetic Resonance Scanner. Applied Magnetic Resonance. 2019. V. 50. № 1–3. P. 17–27. DOI 10.1007/s00723-018-1081-3.
  11. Anisimov N.V., Pavlova O.S., Tarasova A.A., Usanov I.A., Gulyaev M.V., Pirogov Yu.A. Multinuclear MRI and MRS at 0.5 Tesla. Applied Magnetic Resonance. 2022. V. 53. № 12. P. 1575–1585. DOI 10.1007/s00723-022-01489-5.
  12. Tarasova A.A., Anisimov N.V., Pirogov Yu.A. 19F MRI for recognizing RF coil circuits and constructing their sensitivity maps. Abstracts of International Conference "Modern Development of Magnetic Resonance". Kazan. 2023. P. 176–178.
  13. Anisimov N.V., Tarasova A.A., Pavlova O.S., Fomina D.V., Makurenkov A.M., Pavlovskaya G.E., Pirogov Yu.A. MRI Coils Optimized for Detection of 1H and 23Na at 0.5 T. Applied Magnetic Resonance. 2021. V. 52. № 3. P. 221–233. DOI 10.1007/s00723-020-01306-x.
  14. Anisimov N.V., Tarasova A.A., Usanov I.A., Pavlova O.S., Cheshkov D.A., Pirogov Yu.A. NMR signal detection in the presence of external interference. Electromagnetic waves and electronic systems. 2021. V. 26. № 5. P. 50−59. DOI 10.18127/j15604128-202105-06.
  15. Ernst R.R., Bodenhausen G., Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. New York: Oxford University Press, 1987. 610 p.
  16. Madelin G., Lee J.-S., Regatte R.R., Jerschow A. Sodium MRI: methods and applications. Progress in Nuclear Magnetic Resonance Spectroscopy. 2014. V. 79. P. 14–47. DOI 10.1016/j.pnmrs.2014.02.001.
  17. Mellon E.A., Pilkinton D.T., Clark C.M., Elliott M.A., Witschey W.R., Borthakur A., Reddy R. Sodium MR imaging detection of mild Alzheimer disease: preliminary study. American Journal of Neuroradiology. 2009. V. 30. № 5. P. 978–984. DOI 10.3174/ ajnr.A1495.
  18. Reetz K., Romanzetti S., Dogan I., Saβ C., Werner C.J., Schiefer J., Schulz J.B., Shah N.J. Increased brain tissue sodium concentration in Huntington's Disease – a sodium imaging study at 4 T. Neuroimage. 2012. V. 63. № 1. P. 517–524. DOI 10.1016/j.neu­roimage.2012.07.009.
  19. Karg M.V., Bosch A., Kannenkeril D., Striepe K., Ott C., Schneider M.P., Boemke-Zelch F., Linz P., NagelA.M., Titze J., Uder M., Schmieder R.E. SGLT-2-inhibition with dapagliflozin reduces tissue sodium content: a randomised controlled trial. Cardiovascular Diabetology. 2018. V. 17. № 1. P. 5. DOI 10.1186/s12933-017-0654-z.
  20. Christa M., Weng A.M., Geier B., Wormann C., Scheffler A., Lehmann L., Oberberger J., Kraus B.J., Hahner S., Störk S., Klink T., Bauer W.R., Hammer F., Kostler H. Increased myocardial sodium signal intensity in Conn’s syndrome detected by 23Na magnetic resonance imaging. European Heart Journal. Cardiovascular Imaging. 2019. V. 20. № 3. P. 263–270. DOI 10.1093/ehjci/jey134.
  21. Veliyulin E., Aursand I.G. 1H and 23Na MRI studies of Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua) fillet pieces salted in different brine concentrations. Journal of the Science of Food and Agriculture. 2007. V. 87. № 4. P. 2676–2683. DOI 10.1002/jsfa.3030.
  22. Kim R.J., Lima J.A., Chen E.L., Reeder S.B., Klocke F.J., Zerhouni E.A., Judd R.M. Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction: potential to assess myocardial viability. Circulation. 1997. V. 95. № 7. P. 1877–1885. DOI 10.1161/01.CIR.95.7.1877.
  23. Zbýň Š., Brix M.O., Juras V., Domayer S.E., Walzer S.M., Mlynarik V., Apprich S., Buckenmaier K., Windhager R., Trattnig S. Sodium magnetic resonance imaging of ankle joint in cadaver specimens, volunteers, and patients after different cartilage repair techniques at 7 T: initial results. Investigative Radiology. 2015. V. 50. № 4. V. 246–254. DOI 10.1097/RLI.0000000000000117.
  24. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nature Methods. 2012. V. 9. № 7. P. 671–675. DOI 10.1038/nmeth.2089.
  25. Wetterling F., Corteville D.M., Kalayciyan R., Rennings A., Konstandin S., Nagel A.M., Stark H., Schad L.R. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer. Physics in Medicine and Biology. 2012. V. 57. № 14. P. 4555–4567. DOI 10.1088/0031-9155/57/14/4555.
  26. Tarasova A.A., Anisimov N.V., Pavlova O.S., Gulyaev M.V., Usanov I.A., Pirogov Yu.A. Fluorine and Sodium MRI on 0.5 T Clinical Scanner. Abstracts of International Conference "Modern Development of Magnetic Resonance". Kazan. 2021. P. 234–235.
Date of receipt: 21.03.2024
Approved after review: 12.04.2024
Accepted for publication: 26.05.2024