350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2024 г.
Article in number:
Oscillations of photocurrent in the structure of a space-time electro-optical modulator in the presence of monopolar injection from illuminated contact
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202403-01
UDC: 537.9
Authors:

Yu.I. Kuzmin1

1 Ioffe Physical Technical Institute of Russian Academy of Sciences (Saint Petersburg, Russia)

1 iourk@yandex.ru

Abstract:

The effect of injection current on transient photocurrent is studied in the case of arbitrary light absorption in space-time electro-optical modulator in the presence of charge carrier trapping. Photocurrent oscillations caused by the generation of alternating space-charge regions in the form of domains that move from the collector to the emitter, are found. It is shown that the injection current stabilizes an electric field on the emitter.

Pages: 5-12
For citation

Kuzmin Yu.I. Oscillations of photocurrent in the structure of a space-time electro-optical modulator in the presence of monopolar injection from illuminated contact. Electromagnetic waves and electronic systems. 2024. V. 29. № 3. P. 5−12. DOI: https://doi.org/ 10.18127/j15604128-202403-01 (in Russian)

References
  1. Frejlich J. Photorefractive materials: fundamental concepts, holographic recording and materials characterization. Hoboken, New Jersey: Wiley. 2007. 336 p.
  2. Gamaly E.G., Juodkazis S., Mizeikis V., Misawa H., Rode A.V., Krolikowski W. Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal. Physical Review B. 2010. V. 81. № 5. P. 054113. DOI 10.1103/PhysRevB. 81.054113.
  3. Hernandez-Garay M.P., Martinez-Matos O., Izquierdo J.G., Calvo M.L., Vaveliuk P., Cheben P., Banares L. Femtosecond spectral pulse shaping with holographic gratings recorded in photopolymerizable glasses. Optics Express. 2011. V. 19. № 2. P. 1516–1527. DOI 10.1364/OE.19.001516.
  4. Turkin Ya.V., Gubina A.S. Photoinduced spin polarization in two-dimensional material with spin-orbit coupling. Radio Engineering. 2019. V. 83. № 8(12). P. 128-133. DOI 10.18127/j00338486-201908(12)-20. (in Russian)
  5. Böer K.W. Introduction to Space Charge Effects in Semiconductors. Berlin: Springer. 2010. 331 p. DOI 10.1007/978-3-642-02236-4.
  6. Haneef H.F., Zeidell A.M., Jurchescu O.D. Charge carrier traps in organic semiconductors: a review on the underlying physics and impact on electronic devices. Journal of Materials Chemistry C. 2020. V. 8. № 3. P. 759–787. DOI 10.1039/c9tc05695e.
  7. Sze S.M., Ng K.K. Physics of semiconductor devices. Hoboken, New Jersey: Wiley. 2007. 815 p.
  8. Zubair M., Ang Y.S., Ang L.K. Thickness dependence of space-charge-limited current in spatially disordered organic semiconductors. IEEE Transactions on Electron Devices. 2018. V. 65. № 8. P. 3421–3429. DOI 10.1109/TED.2018.2841920.
  9. Petrov M.P., Stepanov S.I., Khomenko A.V. Photorefractive crystals in coherent optical systems. Berlin: Springer. 1991. 275 p.
  10. Gunter P., Huignard J.-P. Photorefractive materials and their applications 1: Basic effects. Berlin: Springer. 2006. 430 p.
  11. Darr A.M., Darr C.R., Garner A.L. Theoretical assessment of transitions across thermionic, field, and space-charge-limited emission. Physical Review Research. 2020. V. 2. № 3. P. 033137. DOI 10.1103/PhysRevResearch.2.033137.
  12. Ding X., Zhao Y., Xiao H., Qiao L. Engineering Schottky-to-Ohmic contact transition for 2D metal-semiconductor junctions. Applied Physics Letters. 2021. V. 118. № 9. P. 091601. DOI 10.1063/5.0039111.
Date of receipt: 25.03.2024
Approved after review: 26.04.2024
Accepted for publication: 26.05.2024