350 rub
Journal Electromagnetic Waves and Electronic Systems №2 for 2024 г.
Article in number:
A quantum approach to the periodic table
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202402-02
UDC: 538.95
Authors:

L.V. Lysenko1, V.K. Shatalov2, A.K. Gorbunov3

1–3 Kaluga branch of the Bauman MSTU (Kaluga, Russian)

2 vkshatalov@yandex.ru

Abstract:

The quantum approach to the periodic table is determined by the law of universal gravitation, Planck's constant, and Coulomb's laws. From the phenomenological dimensionless equation, a dependence is obtained that generalizes the elements of the periodic table in dimensionless form. New dimensionless complexes represent the relationship between Planck's constant, gravitational constant, speed of light and masses for each element of the periodic table. It is shown that the probabilistic parameters of the wave function, together with the quantum numbers of the elements of the periodic table, make it possible to proceed to the assessment of energy parameters.

Pages: 14-21
For citation

Lysenko L.V., Shatalov V.K., Gorbunov A.K. A quantum approach to the periodic table. Electromagnetic waves and electronic systems. 2024. V. 29. № 2. P. 14−21. DOI: https://doi.org/10.18127/ j15604128-202402-02 (in Russian)

References
  1. Casado J. Connecting Quantum and Cosmic Scales by a Decreasing-Light-Speed Model. [Electronic resource] – Access mode: https://arxiv.org/ftp/astro-ph/papers/0404/0404130.pdf, date of reference 28.11.2023.
  2. Wichman E. Berkeley course of physics. V. 4. Quantum physics. Ed. by A.I. Shalnikov, A.O. Weissenberg. M.: Nauka. 1986. 390 p. (in Russian)
  3. Elementary particles. Transl. from Eng. by M.K. Polivanova et al. Ed. by B.V. Medvedev. M.: Nauka. 1965. 140 p. (in Russian)
  4. Planck 2015 results. XIII. Cosmological parameters. [Electronic resource] – Access mode: https://arxiv.org/pdf/1502.01589.pdf, date of reference 28.11.2023.
  5. Lysenko L.V., Shatalov V.K. Energy technology approach to the physical meaning of the fundamental fine structure constant. High-tech technologies. 2023. V. 24. № 6. P. 22–28. DOI 10.18127/j19998465-202306-02. (in Russian)
  6. Lysenko L.V., Shatalov V.K. Energy technological interpretation of Maxwell equations. Electromagnetic waves and electronic systems. 2023. V. 28. № 2. P. 64−72. DOI 10.18127/j15604128-202302-08. (in Russian)
  7. Lysenko L.V., Korzhavyi A.P., Romanov A.V., Shatalov V.K., Chelenko A.V. Application of the energy technology approach to the interpretation of the nature of the magnetic wave and light. Electromagnetic waves and electronic systems. 2021. V. 26. № 3. P. 48−53. DOI 10.18127/j15604128-202103-06. (in Russian)
  8. Lysenko L.V. Epistemological foundations of energy technological processes: Textbook. M.: AI Pi Ar Media. 2023. 75 p. ISBN 978-5-4497-2005-4. (in Russian)
  9. Lysenko L.V. Theoretical foundations of design assessments of energy technological processes. M.: Energoatomizdat. 1997. 66 p. (in Russian)
  10. Korzhavy A.P., Lysenko L.V., Shatalov V.K., Gorbunov A.K., Lysenko A.L. Gravitational attraction in energy-technological interpretation. High-tech technologies. 2015. V. 16. № 9. P. 56–60. (in Russian)
  11. Lysenko L.V., Shatalov V.K., Gorbunov A.K., Lysenko A.L., Ovcharenko I.N. Energotechnological interpretation of the basic law of dynamics. High-tech technologies. 2014. V. 15. № 8. P. 55–58. (in Russian)
  12. Lysenko S.L., Bulatov A.A. Derivation of Coulomb's law for magnetic charges. Electromagnetic waves and electronic systems. 2016. V. 21. № 5. P. 19–23. (in Russian)
  13. Shatalov V.K., Korzhavyi A.P., Lysenko L.V. Mechanical properties and structure of titanium alloy overlays alloyed with oxygen from the oxide layer of filler rods. Metal Science and Heat Treatment. 2020. V. 62. № 7-8. P. 524–528. DOI 10.1007/s11041-020-00596-z.
  14. Gnedenkov S.V., Gordienko P.S., Lysenko L.V., Sinebryukhov S.L., Khrisanova O.A., Skorobogatova T.M., Minaev A.I., Blinnikov O.V. Effect of coatings formed on titanium by microarc oxidation on the intensity of the salt deposition process. Fizika i khimiya obrabotki materialov. 1997. № 2. P. 65–69.
  15. Amelicheva K.A., Gorbunov A.K., Lysenko A.L., Lysenko L.V., Shatalov V.K. Theoretical approaches to teleportation processes. High-tech technologies. 2017. V. 18. № 10. P. 17–23. (in Russian)
  16. Lysenko L.V., Shatalov V.K. Theory of diffusion-kinetic model in microarc oxidation. Corrosion: materials, protection. 2006. № 10. P. 40-42. (in Russian)
  17. Leonov V.P., Gorynin I.V., Kudryavtsev A.S., Ivanova L.A., Travin V.V., Lysenko L.V. Titanium alloys in steam turbine construction. Inorganic Materials: Applied Research. 2015. V. 6. № 6. P. 580–590. DOI 10.1134/S2075113315060076.
  18. Shatalov V.K., Korzhavy A.P., Lysenko L.V., Mikhaylov V.I., Blatov A.A. Increasing the strength of the deposits of titanium alloys using rods process by microarc oxidation. Welding International. 2017. V. 31. № 12. P. 964–968. DOI 10.1080/09507116.2017.1369055.
  19. Travin V.V., Lysenko L.V. Investigation of temperature fields in a bearing sleeve with anisotropic carbon fiber. Voprosy materialovedeniya. 2001. № 2(26). P. 124–129. (in Russian)
  20. Shatalov V.K., Korzhavy A.P., Lysenko L.V., Mikhailov V.I., Blatov A.A. Increasing the strength of surfacing from titanium alloys with rods treated with microarc oxidation. Welding production. 2017. № 3. P. 8–13. (in Russian)
  21. Shatalov V.K., Lysenko L.V., Shtokal A.O. Plasma-electrolytic treatment of developed titanium surfaces during the formation of protective coatings on them. Electromagnetic waves and electronic systems. 2019. Vol. 24. № 6. P. 32–37. DOI 10.18127/j15604128-201905-05. (in Russian)
  22. Shatalov V.K., Lysenko L.V., Makarenko I.V., Mamonov A.M., Titkov A.N., Travin V.V. Surface topography of titanium alloys after thermohydrogen treatment. Physics and chemistry of materials processing. 2005. № 5. P. 59–68. (in Russian)
  23. Shatalov V.K., Lysenko L.V., Govorun T.A., Shtokal A.O. Technological procedure for the formation of an oxide layer on the surfaces of structures made of titanium alloys. Protection of Metals and Physical Chemistry of Surfaces. 2019. Т. 55. № 7. P. 1352–1356. DOI 10.1134/S2070205119070153.
  24. Akhmelkin M.A., Lysenko L.V. Creative Russian microelectronics. Kaluga: Manuscript. 2020. 68 p. (in Russian)
Date of receipt: 14.01.2024
Approved after review: 18.02.2024
Accepted for publication: 26.03.2024