350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2024 г.
Article in number:
Elements for the antenna array of radiothermometry of biological objects
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202401-06
UDC: 621.396
Authors:

I.O. Porokhov1, S.V. Agasieva2, V.Yu. Leushin3, V.F. Los’4, G.A. Gudkov5

1–3 Patrice Lumumba Peoples' Friendship University of Russia (Moscow, Russia)

4,5 LLC "Scientific and Production Innovative Company "HYPERION" (Moscow, Russia)

2 agasieva-sv@rudn.ru, 3 ra3bu@yandex.ru, 4,5 ooo.giperion@gmail.com

Abstract:

Problem statement. Antenna elements that are part of multichannel radiothermographs should have minimal dimensions and a low level of mutual communication when placed on biological objects.

Purpose. There is to investigate a flat biconus antenna and a two–way Archimedean spiral antenna as elements of antenna arrays in the range from 2 to 5 GHz when working on a biological phantom - the human mammary gland.

Results. The results of the distribution of absorbed power inside the biological phantom are obtained and the magnitude of the mutual connection between closely spaced elements when working as part of an antenna array is determined.

Practical significance. The designs of antenna elements for operation as part of antenna arrays for radiometry tasks of biological objects are proposed.

Pages: 75-83
For citation

Porokhov I.O., Agasieva S.V., Leushin V.Yu., Los’ V.F., Gudkov G.A. Elements for the antenna array of radiothermometry of biological objects. Electromagnetic waves and electronic systems. 2024. V. 29. № 1. P. 75−83. DOI: https://doi.org/10.18127/j15604128-202401-06 (in Russian)

References
  1. Leushin V.Yu., Sidorov I.A., Porokhov I.O., Chizhikov S.V., Agasieva S.V., Agandeev R.V. Multichannel medical 3D radiothermograph. Biomedicine Radioengineering. 2022. V. 25. № 6. Р. 60–66. DOI 10.18127/j15604136-202206-07. (In Russian)
  2. Porokhov I.O., Popov V.P., Kondratyev A.A., Kozlov I.A., Alimirzoev R.R., Leushin V.Yu., Agasieva S.V., Antonenkova A.Yu. Broadband active antenna for monitoring electromagnetic radiation sources. Nanotechnology: the development, application – XXI Century. 2022. V. 14. № 3. Р. 14−21. DOI 10.18127/j22250980-202203-02. (In Russian)
  3. Losev A.G., Popov I.E., Gudkov A.G., Chizhikov S.V. Intelligent analysis of microwave radiothermometry data in medical diagnostics. Nanotechnology: the development, application – XXI Century. 2023. V. 15. № 1. P. 5–22. DOI 10.18127/j22250980-202301-01. (In Russian)
  4. Polyakov M.V., Khoperskov A.V., Gudkov A.G., Chizhikov S.V. Mathematical modeling of brightness temperature in biological tissues for medical problems. Nanotechnology: the development, application – XXI Century. 2023. V. 15. № 2. P. 5–21. DOI 10.18127/j22250980-202302-01. (In Russian)
  5. Sedelnikov Yu.E., Potapova O.V., Sadykov A.R., Skachkov V.A. Focused antennas in contact radiothermometry applications. Journal of Radio Electronics. 2021. № 3. DOI 10.30898/1684-1719.2021.3.11. (In Russian)
  6. Shabashov E.P., Shabunin S.N., Mrdakovich B. Modeling and analysis of the spiral antenna properties for the research of the brain radiation in the microwave range. Ural Radio Engineering Journal. 2020. V. 4. № 1. P. 84–99. DOI 10.15826/urej.2020.4.1.005. (In Russian)
  7. Panchenko B.A, Kublanov V.S., Baranov S.A., Borisov V.I., Sedelnikov Y.E. Antenna for contact microwave radiometers for monitoring of the brain microwave radiation. International Applied Computational Electromagnetics Society Symposium (ACES). Firenze, Italy. 2017. P. 7916406. DOI 10.23919/ROPACES.2017.7916406.
  8. Momenroodaki P., Popović Z., Fallahpour M. Antenna probes for power reception from deep tissues for wearable microwave thermometry. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. San Diego, USA. 2017. P. 573–574. DOI 10.1109/APUSNCURSINRSM.2017.8072329.
  9. Kim I., Lee D.-M., Cho M.-H., Lee Y.-J., Han J.-H., Shin J.-W., Lee H.-Y., Kim E.-S., Kim N.-Y. Compact dual-band on-body near field antenna with reflector for measuring deep core temperature. IEEE Access. 2023. V. 11. P. 32944–32953. DOI 10.1109/ACCESS.2023. 3262997.
  10. Rodrigues D.B., Maccarini P.F., Salahi S., Oliveira T.R., Pereira P.J.S., Limão-Vieira P., Snow B.W., Reudink D., Stauffer P.R. Design and optimization of an ultra-wideband and compact microwave antenna for radiometric monitoring of brain temperature. IEEE Transactions on Biomedical Engineering. 2014. V. 61. № 7. P. 2154–2160. DOI 10.1109/TBME.2014.2317484.
  11. Scheeler R., Kuester E.F., Popović Z. Sensing depth of microwave radiation for internal body temperature measurement. IEEE Transactions on Antennas and Propagation. 2014. V. 62. № 3. P. 1293–1303. DOI 10.1109/TAP.2013.2295595.
  12. Sugumar S.P., Arunachalam K., Krishnamurthy C.V. Design of an ultra-wide band active antenna for medical microwave radiometry. URSI Asia-Pacific Radio Science Conference (AP-RASC). New Delhi, India. 2019. P. 1–3. DOI 10.23919/URSIAP-RASC.2019.8738779.
  13. Dielectric Properties. IT'IS Foundation. [Electronic resource] – Access mode: https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/, date of application 12.07.2023.
  14. Rahardjo E.T., Witjaksono G., Lestari A.A., Yarovoy A., Ligthart L.P. A stripline balun design for UWB bow-tie antenna application. Asia-Pacific Microwave Conference. Bangkok, Thailand. 2007. P. 1–4. DOI 10.1109/APMC.2007.4555161.
Date of receipt: 11.12.2023
Approved after review: 29.12.2023
Accepted for publication: 26.01.2024