350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2024 г.
Article in number:
Effect of absorber characteristics on O-type traveling wave tube operation
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202401-03
UDC: 621.385.6
Authors:

Chong-Zu Nguyen1, D.G. Kovtun2

1,2 Volgograd State Technical University (Volgograd, Russia)

2 kdmob74@gmail.com

Abstract:

In an O-type traveling-wave tube (TWT), part of the electromagnetic wave energy can propagate back to the input during the amplification process, which leads to unstable operation of the device. To prevent this effect, an absorber can be used in the device that absorbs the reflected wave energy and protects the input and output powers from fluctuations. This paper presents numerical simulation results of processes in a full terahertz TWT model using an absorber based on the finite-difference time-domain method to solve Maxwell equations and the particle-in-cell method to calculate electron beam dynamics. Obtained data analysis makes it possible to clearly demonstrate the effect of absorber on TWT wave amplification in single-frequency mode.

Pages: 30-40
For citation

Nguyen Chong-Zu, Kovtun D.G. Effect of absorber characteristics on O-type traveling wave tube operation. Electromagnetic waves and electronic systems. 2024. V. 29. № 1. P. 30−40. DOI: https://doi.org/10.18127/j15604128-202401-03 (in Russian)

References
  1. Chan W.L. Deibel J., Mittleman D.M. Imaging with terahertz radiation. Reports on Progress in Physics. 2007. V. 70. № 8. P. 1325–1379. DOI 10.1088/0034-4885/70/8/R02.
  2. Zhang J.-Y., Ren J.-J., Li L.-J., Gu J., Zhang D.-D. THz imaging technique for nondestructive analysis of debonding defects in ceramic matrix composites based on multiple echoes and feature fusion. Optics Express. 2020. V. 28. № 14. P. 19901–19915. DOI 10.1364/ OE.394177.
  3. Gibin I.S., Kotlyar P.E. Matrix Optical-Electronic Terahertz Radiation Receiver with Nanooptoelectromechanichal Elements on the Base of Perforated SLG Graphene. Applied Physics. 2020. № 3. P. 76–82. (in Russian)
  4. Panas A.I., Chigarev S.G., Vilkov E.A., Byshevsky-Konopko O.A. Spin-Injection Mechanism of Intrinsic Magnetization Excitation in Antiferromagnetic Nanofilm. Applied Physics. 2020. № 5. P. 16–22. (in Russian)
  5. Shin Y.-M., Barnett L.R., Luhmann N.C. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation. IEEE Transactions on Electron Devices. 2009. V. 56. № 5. P. 706–712. DOI 10.1109/TED.2009.2015404.
  6. Karetnikova T.A., Rozhnev A.G., Ryskin N.M., Torgashov G.V., Sinitsyn N.I., Grigoriev Yu.A., Grigoriev Yu.A., Burtsev A.A., Shalaev P.D. Modeling a subterahertz traveling-wave tube with a slow-wave structure of the double grating type and a sheet electron beam. Journal of Communications Technology and Electronics. 2016. V. 61. № 1. P. 54–60. DOI 10.1134/S1064226915120116. (in Russian)
  7. Shi X., Wang Zh., Zhang Y.,Wang Y., Liu Sh., Duan Zh., Wei Y., Gong Y. An Arbitrary Staggered Multi-Vane Traveling Wave Tube Driven by Double Sheet Electron Beams. 8th UK, Europe, China Millimeter Waves and THz Technology Workshop. Cardiff, UK. 2015. P. 1–3. DOI 10.1109/UCMMT.2015.7460606.
  8. Deng G., Huang X., Yang J., Yin Z., Ruan J. A Three-Stage Cascaded Staggered Double Vane for a 220 GHz Traveling-Wave Tube. Plasma and Fusion Research. 2015. V. 10. P. 1406078–1406078. DOI 10.1585/pfr.10.1406078.
  9. Shin Y.M., Baig A., Barnett L.R., Luhmann N.C., Pasour J., Larsen P. Modeling Investigation of an Ultrawideband Terahertz Sheet Beam Traveling-Wave Tube Amplifier Circuit. IEEE Transactions on Electron Devices. 2011. V. 58. № 9. P. 3213–3218. DOI 10.1109/TED. 2011.2159842.
  10. Shin Y.-M., Baig A., Barnett L.R., Tsai W.-C., Luhmann N.C. System Design Analysis of a 0.22-THz Sheet-Beam Traveling-Wave Tube Amplifier. IEEE Transactions on Electron Devices. 2012. V. 59. № 1. P. 234–240. DOI 10.1109/TED.2011.2173575.
  11. Luo J., Xie W., Fan Y., Ma T., Wang Z., Zhao D. A wideband input/output structure for the staggered double grating sheet beam travelling wave tube. IEEE International Vacuum Electronics Conference. Monterey, USA. 2016. P. 1–2. DOI 10.1109/IVEC.2016. 7561910.
  12. Shu G., Deng J., Xie L., Liu G., Zhang L., Wang J., Qian Z.F., He W. Design, Fabrication, and Cold Test of a High Frequency System for an H-Band Sheet Beam Travelling Wave Tube. IEEE Transactions on Terahertz Science and Technology. 2020. V. 10. № 3. P. 292–301. DOI 10.1109/TTHZ.2020.2972531.
  13. Zhang Z., Ruan C. High-power and Broadband Terahertz TWT Amplifier Based on High Order Mode Staggered Double Vane Structure. Photonics & Electromagnetics Research Symposium. Xiamen, China. 2019. P. 555–559. DOI 10.1109/PIERS-Fall48861.2019.9021797.
  14. Fan Y., Luo J., Fang Z. W-band sheet beam staggered double grating traveling wave tube with simplified input/output structure. Eighteenth International Vacuum Electronics Conference. London, UK. 2017. P. 1–2. DOI 10.1109/IVEC.2017.8289566.
  15. Burtsev A.A., Bushuev N.A., Navrotsky I.A., Sakhadzhi G.V., Shalaev P.D., Grigoriev Y.A. Experimental study of electron guns for TWT of terahertz range. IEEE International Vacuum Electronics Conference. Beijing, China. 2015. P. 7223751. DOI 10.1109/IVEC.2015. 7223751.
  16. Nguyen Ch.Z., Alikov S.A., Shein A.G., Kovtun D.G., Ilyin E.M. Three-dimensional modeling of processes in a traveling-wave tube terahertz range. Electromagnetic waves and electronic systems. 2021. V. 26. № 1. P. 45−53. DOI 10.18127/j15604128-202101-05. (in Russian)
  17. Nguyen Ch.Z., Kovtun D.G. O-Type Traveling-Wave Tube Double-Frequency Mode Simulation. Electromagnetic waves and electronic systems. 2023. V. 28. № 1. P. 12–20. DOI 10.18127/j5604128-202301-02. (in Russian)
  18. Certificate of state registration of the computer program № 2021613359 dated 5.03.2021. Numerical simulation of the operation of an electric vacuum microwave device in a multi-frequency mode / Ch.Z. Nguyen, D.G. Kovtun. (in Russian)
Date of receipt: 22.11.2023
Approved after review: 20.12.2023
Accepted for publication: 26.01.2024