350 rub
Journal Electromagnetic Waves and Electronic Systems №4 for 2023 г.
Article in number:
Prospects for miniaturization of the sizes of electrically small antennas under operating frequency band restrictions
Type of article: overview article
DOI: https://doi.org/10.18127/j5604128-202304-06
UDC: 615.471
Authors:

V.F. Los'1, I.O. Porokhov2, S.V. Agasieva3, G.А. Gudkov4

1,4 LLC "Scientific and Production Innovative Company "HYPERION" (Moscow, Russia)

2,3 Patrice Lumumba Peoples' Friendship University of Russia (Moscow, Russia)

Abstract:

A microwave radiometry allow receive a temperature data of a human tissue by of its own electromagnetic radiation and thereby allow carry out a early recognition of oncological diseases, reveal inflammations of a different kind, since tissues temperature variations as a rule preceded to structural changes. Therefore it is important to work out a space-saving multichannel and/or multifrequency microwave diagnostic antenna, which may be placed on patient body or clothes for a long-term monitoring. Moreover it is proved, what microwave radiometry method allow to define impotent for agriculture a soil moisture, implement a monitoring of pipeline routes and earthy dams for the purpose of a leakage detection, to find a oil slick on a water surface, to monitoring a road condition, to determine forest and turfy fire. Miniaturization of antennas for all this applications is a very important since antennas mostly located on small pilotless vehicles, a vacant space on which is bounded. Hence a miniaturization of antenna dimensions is an actual problem.

Pages: 57-78
For citation

Los' V.F., Porokhov I.O., Agasieva S.V., Gudkov G.А. Prospects for miniaturization of the sizes of electrically small antennas under operating frequency band restrictions. Electromagnetic waves and electronic systems. 2023. V. 28. № 4. P. 57−78. DOI: https://doi.org/10.18127/j15604128-202304-06 (in Russian)

References
  1. Slyusar V.I. 60 years of electrically small antennas. Some results. Electronics: Science, technology, business. 2006. № 7(73). P. 10–19. (in Russian)
  2. Wheeler H.A. Fundamental Limitations of Small Antennas. Proceedings of the IRE. 1947. V. 35. № 12. P. 1479–1484. DOI 10.1109/ JRPROC.1947.226199.
  3. Fano R.M. Theoretical Limitations of the Broadband Matching of Arbitrary Impedances. Journal of the Franklin Institute. 1950. V. 249. № 2. P. 139–154. DOI 10.1016/S0016-0032(50)91101-X.
  4. Chu L.J. Physical Limitations of Omni-Directional Antennas. Journal of Applied Physics. 1948. V. 19. № 2. P. 1163–1175. DOI 10.1063/ 1.1715038.
  5. Collin R.E., Rothschild S.L. Evaluation of Antenna Q. IEEE Transactions on Antennas and Propagation. 1964. V. 12. № 1. P. 23–27. DOI 10.1109/TAP.1964.1138151.
  6. McLean J.S. A re-examination of the fundamental limits on the radiation Q of electrically small antennas. IEEE Transactions on Antennas and Propagation. 1996. V. 44. № 5. P. 672. DOI 10.1109/8.496253.
  7. Collin R.E. Minimum Q of small Antennas. Journal of Electromagnetic Waves and Applications. 1998. V. 12. № 10. P.1369-1393. DOI 10.1163/156939398X01457.
  8. Pozar D.M. New results for minimum Q, maximum gain, and polarization properties of electrically small arbitrary antennas. 3rd European Conference on Antennas and Propagation. Berlin, Germany. 2009. P. 1993–1996.
  9. Thal H.L. Gain and Q bounds for coupled TM-TE modes. IEEE Transactions on Antennas and Propagation. 2009. V. 57. № 7. P. 1879–1885. DOI 10.1109/TAP.2009.2021930.
  10. Hansen R.C., Collin R.E. Small antenna handbook. New Jersey: John Wiley & Sons. 2011. 360 p. ISBN 978-0-470-89083-7.
  11. Grimes D.M., Grimes C.A. Bandwidth and Q of antennas radiating TE and TM modes. IEEE Transactions on Electromagnetic Compatibility. 1995. V. 37. № 2. P. 217–226. DOI 10.1109/15.385886.
  12. Grimes D.M., Grimes C.A. Power in modal radiation fields: Limitations of the complex poynting theorem and the potential for electrically small antennas. Journal of Electromagnetic Waves and Applications. 1997. V. 11. № 12. P. 1721–1747. DOI 10.1163/ 156939397X00486.
  13. Browne J. Small Antennas Are Big On Efficiency. [Electronic resource] – Access mode: https://www.mwrf.com/technologies/compo-nents/article/21843539/small-antennas-are-big-on-efficiency, date of reference 15.06.2023.
  14. Wu T.T., King R.W.P. The cylindrical antenna with nonreflecting resistive loading. IEEE Transactions on Antennas and Propagation. 1965. V. 13. № 3. P. 369–373. DOI 10.1109/tap.1965.1138429.
  15. Balzovsky E.V., Buyanov Yu.I., Koshelev V.I. Ultra-wide-band dipole antenna with resistive arms. Radio engineering and electronics. 2004. V. 49. №4. P. 460–465. (in Russian)
  16. Titov A.N. Some aspects concerning the designing of ultrawideband and pulse antennas. Radio Physics and Radio Astronomy. 2002. V. 7. № 4. P. 479–482.
  17. Sievenpiper D.F., Dawson D.C., Jacob М.M., Kanar T., Kim S., Long J., Quarfoth R.G. Experimental Validation of Performance Limits and Design Guidelines for Small Antennas. IEEE Transactions on Antennas and Propagation. 2012. V. 60. № 1. P. 8–19. DOI 10.1109/ TAP.2011.2167938.
  18. Uvarov A.V., Uvarov A.V. Modern trends in the miniaturization of UWB antennas of mobile devices. Materials of the All-Russian Scientific Conference "V All-Russian Armand readings. Ultra-wideband signals in radar, communications and acoustics": Murom: Printing Center MI VlSU. 2015. P. 220–224. (in Russian)
  19. Hoorfar A. Evolutionary programming in electromagnetic optimization: A review. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 3. P. 523–537. DOI 10.1109/TAP.2007.891306.
  20. Gladkov L.A., Kureychik V.V., Kureychik V.M. Genetic algorithms: textbook. Ed.2-E. M.: FIZMATLIT. 2010. 366 p. ISBN 978-5-9221-0510-1. (in Russian)
  21. Slyusar V.I. Antenna synthesis based on genetic algorithms. The first mile. 2008. V. 9. № 6. P. 16–23. (in Russian)
  22. Slyusar V.I. Antenna synthesis based on genetic algorithms. Part 2. The First Mile. 2009. V. 10. № 1. P. 22-25. (in Russian)
  23. Perez J.R., Basterrechea J. Comparison of Different Heuristic Optimization Methods for Near-Field Antenna Measurements. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 3. P. 549–555. DOI 10.1109/TAP.2007.891508.
  24. Singh U., Rumar H., Kamal T.S. Design of Yagi-Uda Antenna Using Biogeography Based Optimization. IEEE Transactions on Antennas and Propagation. 201. V. 58. № 10. P. 3375–3379. DOI 10.1109/TAP.2010.2055778.
  25. Hoorfar A. Evolutionary Programming in Electromagnetic Optimization: A Review. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 3. P. 523–537. DOI 10.1109/TAP.2007.891306.
  26. Datta T., Misram I.S. A Comparative Study of Optimization Techniques in Adaptive Antenna Array Processing: The Bacteria-Foraging Algorithm and Particle-Swarm Optimization. IEEE Antennas and Propagation Magazine. V. 51. № 6. P. 69–81. DOI 10.1109/ MAP.2009.5433098.
  27. Kozlov K.V., Los V.F. An effective algorithm for optimizing multiparametric problems – the swarm of bees method. Antennas. 2005. № 4(95). P. 18–21. (in Russian)
  28. Weng W.-C., Yang F., Elsherbeni A.Z. Linear Antenna Array Synthesis Using Taguchi's Method: A Novel Optimization Technique in Electromagnetics. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 3. P. 723–730. DOI 10.1109/TAP.2007.891548.
  29. Los V.F., Porokhov I.O. Optimization of geometrical parameters of antennas using the modified Taguchi method. Antennas. 2010. № 1(152). P. 38–44. (in Russian)
  30. Delgado H.J., Thursby M.H. A novel neural network combined with FDTD for the synthesis of a printed dipole antenna. IEEE Transactions on Antennas and Propagation. 2005. V. 53. № 7. P. 2231–2236. DOI 10.1109/TAP.2005.850706.
  31. Galushkin A.I., Kazantsev P.A., Kozlov K.V., Lodyagin A.M., Los V.F., Strizhkov V.A. Neural network synthesis of a microstrip antenna excited by a coaxial probe. Antennas. 2007. № 9(124). P. 35–40. (in Russian)
  32. Huang T., Mohan A.S. A Microparticle Swarm Optimizer for the Reconstruction of Microwave Images. IEEE Transactions on Antennas and Propagation. 2007. V. 55. № 3. P. 568–576. DOI 10.1109/TAP.2007.891545.
  33. Panchenko T.V. Genetic algorithms: an educational and methodological guide for students of higher educational institutions studying in the specialty "Mathematical methods in economics" and other mathematical specialties. Ed. by Yu.Yu. Tarasevich. Astrakhan: Astrakhan Univ. 2007. 88 p. ISBN 5-88200-913-8. (in Russian)
  34. Kramer B.A., Chen C.C., Volakis J.L. Size Reduction of a Low-Profile Spiral Antenna Using Inductive and Dielectric Loading. IEEE Antennas and Wireless Propagation Letters. 2008. V. 7. P. 22–25. DOI 10.1109/LAWP.2007.914116.
  35. Slyusar V.I. Nanoantennas: approaches and prospects. Electronics: Science, Technology, Business. 2009. № 2(92). P. 58–65. (in Russian)
  36. Burke P.J. An RF circuit model for carbon nanotubes. IEEE Transactions on Nanotechnology. 2003. V. 2. № 1. P. 55–58. DOI 10.1109/ TNANO.2003.808503.
  37. Hanson G.W. Fundamental transmitting properties of carbon nanotube antennas. IEEE Transactions on Antennas and Propagation. 2005. V. 53. № 11. P. 3426–3435. DOI 10.1109/TAP.2005.858865.
  38. Huang K.-C., Edwards D.J. Millimetre wave antennas for gigabit wireless communication. UK: John Wiley & Sons. 2008. 275 p. ISBN 978-0-470-51598-3.
  39. Bystrov R.P., Gulyaev Yu.V., Nikitov S.A. Micro- and nanoelectronics applied to radar and radio communication systems. The successes of modern radio electronics. 2010. № 9. P. 11–50. (in Russian)
  40. Bakhrakh L.D., Zaitsev D.F., Sigov A.S. New aspects of nanotechnology application in AFAR equipment: nanophotonics and opto-MEMS. Antennas. 2009. № 6(145). P. 84–95. (in Russian)
  41. Cherpak N.T., Velichko A.V. High-temperature superconductors in microwave technology. The successes of modern radio electronics. 2000. № 4. P. 3–47. (in Russian)
  42. Los V.F. Microstrip and dielectric resonator antennas. CAD models: methods of mathematical regulation: textbook. Stipend. Ed. by L.D. Bahrakh. M.: Radio Engineering. 2002. 96 p. (in Russian)
  43. Chaloupka H., Klein N., Peiniger M., Piel H., Pischke A., Splitt G. Miniaturized high-temperature superconductor microstrip patch antenna. IEEE Transactions on Microwave Theory and Techniques. 1991. V. 39. № 9. P. 1513–1521. DOI 10.1109/22.83826.
  44. Vendik O.G., Vendik I.B., Kholodniak D.V. Applications of High-Temperature Superconductors in Microwave Integrated Circuits. Materials Physics and Mechanics. 2000. V. 2. № 1. P. 15–24.
  45. Kolotinskiy N.V., Bazulin D.E., Kornev V.K. Control line design issues of Active Superconducting Electrically Small Antennas. IEEE 14th Workshop on Low Temperature Electronics. Matera, Italy. 2021. P. 1–3. DOI 10.1109/WOLTE49037.2021.9555443.
  46. Gulyaev Yu.V., Lagarkov A.N., Nikitin S.A. Metamaterials: fundamental research and application prospects. Bulletin of the Russian Academy of Sciences. 2008. V. 78. № 5. P. 438–449. (in Russian)
  47. Bratchikov A.N. Microwave devices, emitters and headlights based on new metamaterials and structures. Antennas. 2009. № 1(140). P 3–72. (in Russian)
  48. Panchenko B.A. Metamaterials and superdirection of antennas. Radio engineering and electronics. 2009. V. 54. № 3. P. 302–307. (in Russian)
  49. Slyusar V.I. Metamaterials in antenna technology: history and basic principles. Electronics: Science, Technology, Business. 2009. № 7(97). P. 70–79. (in Russian)
  50. Millas C., Andersen R.B., Lazaridis P.I., Zaharis Z.D., Muhammad B., Kristensen J.T.B., Mihovska A., Hermansen D.D.S. Metamaterial-Inspired Antennas: A Review of the State of the Art and Future Design Challenges. IEEE Access. 2021. V. 9. P. 89846–89865. DOI 10.1109/ACCESS.2021.3091479.
  51. Zhang J., Yan S., Vandenbosch G.A.E. Composite Right/Left-Handed Transmission Line Metamaterial-Inspired Small Antenna Design: Topologies, reconfigurability, and applications. IEEE Antennas and Propagation Magazine. 2023. V. 65. № 1. P. 71–78. DOI 10.1109/MAP.2022.3201194.
  52. Ma X., Zheng H. A VLF Resonant Antenna Based on Piezoelectric Ceramics. IEEE 4th International Conference on Electronic Information and Communication Technology. Xi'an, China. 2021. P. 338–341. DOI 10.1109/ICEICT53123.2021.9531312.
  53. Choi J., Dagefu F.T., Sadler B.M. Sarabandi K. A Miniature Actively Matched Antenna for Power-Efficient and Bandwidth-Enhanced Operation at Low VHF. IEEE Transactions on Antennas and Propagation. 2021. V. 69. № 1. P. 556–561. DOI 10.1109/ TAP.2020.3004990.
  54. Dagefu F.T., Choi J., Sadler B.M., Sarabandi K. A Survey of Small, Low-Frequency Antennas: Recent designs, practical challenges, and research directions. IEEE Antennas and Propagation Magazine. 2023. V. 65. № 1. P. 14–26. DOI 10.1109/MAP.2021.3127559.
  55. Bickford J.A., Duwel A.E., Weinberg M.S., McNabb R.S., Freeman D.K., Ward P.A. Performance of Electrically Small Conventional and Mechanical Antennas. IEEE Transactions on Antennas and Propagation. 2019. V. 67. № 4. P. 2209–2223. DOI 10.1109/ TAP.2019.2893329.
  56. Dytioco Santos J.P., Fereidoony F., Hedayati M., Wang Y.E. High Efficiency Bandwidth VHF Electrically Small Antennas Through Direct Antenna Modulation. IEEE Transactions on Microwave Theory and Techniques. 2020. V. 68. № 12. P. 5029–5041. DOI 10.1109/ TMTT.2020.3016381.
  57. Microwave radiometry of the earth and water surfaces: from theory to practice. Scientific ed. V.S. Verba, Yu.V. Gulyaev, A.M. Shutko, V.F. Krapivin. Sofia: Academic Publishing House named after Prof. Marina Drinova. 2014. 296 p. ISBN 978-954-322-708-2. (in Russian)
  58. Hossain A., Wagner S., Pancrazio S., Pham A -V. An Electrically Smaller Ultra-Wideband Monopole Antenna for Ground Penetrating Radar Application. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). Singapore, Singapore. 2021. P. 485–486. DOI 10.1109/APS/URSI47566.2021.9704634.
  59. Thankachan S., Paul B., Pradeep A. Design and Analysis of Metamaterial Inspired Electrically Small Circularly Polarised Rectangular Patch Antenna. IEEE 19th India Council International Conference (INDICON). Kochi, India. 2022. P. 1–5. DOI 10.1109/INDICON 56171.2022.10039965.
  60. Yu Y.-H., Zong Z.-Y., Wu W., Fang D.-G. Dielectric Slab Superstrate Electrically Small Antennas With High Gain and Wide Band. IEEE Antennas and Wireless Propagation Letters. 2020. V. 19. № 9. P. 1476–1480. DOI 10.1109/LAWP.2020.3005721.
  61. Machado-Lopez J.J., Christodoulou C. Electrically Small Antennas with Minimal Broadband Radio Frequency Threat Coupling. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Denver, USA. 2022. P. 1424–1425. DOI 10.1109/AP-S/USNC-URSI47032.2022.9887345.
  62. Milias C., Andersen R.B., Lazaridis P.I., Zaharis Z.D., Muhammad B., Kristensen J.T.B., Mihvoska A., Hermansen D.D.S. Electrically Small, Metamaterial-inspired Monopole Antennas for WLAN Applications // 25th International Symposium on Wireless Personal Multimedia Communications (WPMC). Herning, Denmark. 2022. P. 29–32. DOI 10.1109/WPMC55625.2022.10014930.
  63. Stepanyan A., Haroyan H., Hakhoumian A. Electrically small patch antenna based on magnetodielectric resonator // International Conference on Microwave & THz Technologies, Wireless Communications and OptoElectronics (IRPhE 2022). Yerevan, Armenia. 2022. P. 11–14.
  64. Padhi J., Kumar A., Reddy G.S. Gain Enhancement of Electrically Small Indoor Base Station LTE Antenna with Unidirectional Radiation Characteristics. Asia-Pacific Microwave Conference (APMC). Yokohama, Japan. 2022. P. 872–874. DOI 10.23919/APMC55665. 2022.10000058.
  65. Duan Y., Tang M.-C., Wu Z., Zhang Z., Yi D., Li M. Omnidirectional-Radiating, Vertically Polarized, Wideband, Electrically Small Filtenna. IEEE Transactions on Circuits and Systems II: Express Briefs. 2023. V. 70. № 4. P. 1380–1384. DOI 10.1109/TCSII. 2022.3224195.
  66. Barman B., Chatterjee D., Caruso A.N. Performance Optimization of Electrically Small Microstrip Patch Antennas on Finite Ground Planes. IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. Montreal, Canada. 2020. P. 1–2. DOI 10.1109/IEEECONF35879.2020.9329509.
  67. Padhi J., Kumar A., Reddy G.S. Top Loaded Wideband Electrically Small Antenna and Its Quality Factor Analysis. IEEE Microwaves, Antennas, and Propagation Conference (MAPCON). Bangalore, India. 2022. P. 1769–1773. DOI 10.1109/MAPCON56011.2022. 10047706.
  68. Moore M., Verboom J., Lim S. Design of an Electrically Small, Low-profile, Parasitic Array for Wireless Electrocardiograph System. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). Singapore, Singapore. 2021. P. 481–482. DOI 10.1109/APS/URSI47566.2021.9704208.
  69. Guzman J.E.V., Lim S. Design of an Electrically Small, Folded Dipole Antenna for Wireless Electromyography Systems. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI). Denver, USA. 2022. P. 1426–1427. DOI 10.1109/AP-S/USNC-URSI47032.2022.9886804.
  70. Mugisha A.J., Rigi A., Tsiamis A., Podilchak S.K., Mitra S. Electrically Small Antenna For RFID-Based Implantable Medical Sensor. IEEE Journal of Radio Frequency Identification. 2023. V. 7. P. 182–191. DOI 10.1109/JRFID.2023.3256407.
  71. Alsaedi D., Badawe M.E., Ramahi O.M. A Metasurface for Biomedical Imaging Applications. IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI). Singapore, Singapore. 2021. P. 589–590. DOI 10.1109/APS/ URSI47566.2021.9704530.
Date of receipt: 01.06.2023
Approved after review: 22.06.2023
Accepted for publication: 26.07.2023