A.O. Kasyanov1
1−3Southern Federal University (Rostov-on-Don, Russia)
The problem of printed gratings application is considered as converters of electromagnetic waves polarization and polarizing modulators. Two directions in development of antenna engineering are considered in this paper. In each of them the scattering fields control of an antenna arrays allows essentially to expand functionalities of radio engineering sets. The first direction is the creation of auxiliary depolarizing reflectors for two-mirror reflector antennas and folded lenses. In addition, in twist-reflectors based on printed gratings, it is possible to constructively realize the necessary phase distributions of the field on their surfaces. Thus, it becomes possible to use such twist-reflectors to create phase-correcting twist-reflectors. The second direction is connected to application of antenna arrays for a reduction of a radar cross section of the radar-tracking targets. Transformation of a field polarization by an antenna array allows to achieve both these purposes. In an aspect of high cost and complexity of arrays experimental researches as a method of the analysis the mathematical simulation is selected. Besides, it is shown that introduction of impedance loads in the construction of the re-radiating elements of the printed grating opens additional possibilities for controlling the field scattered by it. Thus, twist reflectors with improved characteristics can be realized on the basis of microstrip-pin gratings.
The given results can be used for choosing the most of rational electrodynamic structure geometry variant at decision of particular problems by antennas engineering. The possible flat arrays based on printed complicated shape elements application area is also discussed and it's shown these arrays are the very attractive type for controllable radioelectronic covers designing at microwaves. Some numerical results presented prove the possibility of a printed reflectarrays application as smart covers microwave modules.
Kasyanov A.O. Numerical simulation results of printed polarizers based on meander transmission lines. Electromagnetic waves and electronic systems. 2023. V. 28. № 2. P. 43−56. DOI: https://doi.org/10.18127/j15604128-202302-06 (in Russian)
- Alonso J.M.I., Calderon G.A., Perez M.S. SIW antenna with polarized at Ku-band. IEEE Transactions on Antennas and Propagation. 2015. V. AP-63. № 1. P. 2782−2786.
- Kasyanov A.O., Zagrebnev A.S., Logvinenko E.L., Chernyshev A.S. Dvukhpolyarizatsionnye sosredotochenno-raspredelennye fazirovannye antennye reshetki L-, S‑diapazonov s polusfericheskim sektorom obzora. Radiotekhnika. 2019. T. 83. № 7(9). S. 194−201.
- Doumanis E., Goussetis G., Gomez-Tornero J.L., Cahill R., Fusco V. Anisotropic impedance surfaces for linear to circular polarization conversion. IEEE Transactions on Antennas and Propagation. 2012. V. AP-60. № 1. P. 212−219.
- Zhang C., Wang Y., Zhu F., Wei G., J. Li, C. Wu, Gao S., Liu H. A planar integrated folded reflectarray antenna with circular polarization. IEEE Transactions on Antennas and Propagation. 2017. V. AP-65. № 1. P. 385−390.
- Kasyanov A.O. Matematicheskoe modelirovanie i raschet kharakteristik rasseyaniya pechatnogo chastotno-izbiratelnogo antennogo obtekatelya. Izvestiya YuFU. Tekhnicheskie nauki. 2020. № 6 (216). S. 129−139.
- Kasyanov A.O. Antennyi obtekatel s uglovoi filtratsiei na osnove metallodielektricheskikh difraktsionnykh reshetok. Radiotekhnika. 2021. T. 85. № 7. S. 70−79. DOI: https://doi.org/10.18127/j00338486-202107-11.
- Kasyanov A.O. Rezultaty chislennogo issledovaniya kharakteristik rasseyaniya antennykh obtekatelei na osnove metallodielektricheskikh difraktsionnykh reshetok. Izvestiya YuFU. Tekhnicheskie nauki. 2021. № 2(219). S. 91−105.
- Kasyanov A.O. Chastotno-izbiratelnyi antennyi obtekatel na osnove metallodielektricheskikh difraktsionnykh reshetok i perforirovannykh ekranov. Antenny. 2021. № 3. S. 39−49. DOI: https://doi.org/10.18127/j03209601-202103-06.
- Freiadenhoven T., Bertuch T., Stanko S., Notel D., Vorst D.I.L., Dallmann T. Design of a polarimetric rotating SIW-based reflector for polarimetric radar application. IEEE Transactions on Antennas and Propagation. 2020. V. AP-68. № 11. P. 7414−7422.
- Chulkov V.I. Matematicheskoe modelirovanie mnogosloinykh polyarizatorov na meandrovykh liniyakh. Radiotekhnika. 1994. № 9. S. 71−75.
- Young L., Robinson L.A., Hacking C.A. Meander-line polarizer. IEEE Transactions on Antennas and Propagation. 1973. V. AP-21. № 3. P. 376−378.
- Terret C., Levrel J.R., Mahdjoubi K. Susceptance computation of a meander-line polarizer layer. IEEE Transactions on Antennas and Propagation. 1984. V. AP-32. № 9. P. 1007−1011.
- Chu R-S., Lee K-M. Analytical model of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence. IEEE Transactions on Antennas and Propagation. 1987. V. AP-35. № 6. P. 652−660.
- T.K. Wu. Meander-line polarizer for arbitrary rotation of linear polarization. IEEE Transactions on Microwaves Guided wave Letters. 1994. V. 4. № 6. P. 199−201.
- Zhang J.C., Yin Y.Z., J.P. Ma. Mutifunctional meander line polarizer. Propagation Electromagnetic Res. Letters. 2009. V. 6. P. 55−60.
- Bhattacharyya A.K. Analysis of multilayer infinite periodic array structures with different periodicities and axes orientations. IEEE Transactions on Antennas and Propagation. 2000. V. AP-48. № 3. P. 357−369.
- McNamara D.A. An octave bandwidth meanderline polarizer consists of five identical sheets //Antennas and Propagation Society International Symposium, June 1981. Los Angeles. CA, USA. 1981. P. 237−240. doi: 10.1109/ APS.1981.1148595.
- Joyal M.-A., Laurin J.-J. Analysis and design of thin circular polarizers based on meander lines. IEEE Transactions on Antennas and Propagation. 2012. V. AP-60. № 6. P. 3007−3011.
- Patent U.S. Meanderline polarization twister. T.K. Wu., Helms D.L., 4,786,914. Nov. 22. 1988.
- Hwang K.C. Optimization of broadband twist reflector for Ku-band application. Electronics Letters. 31st January 2008. V. 44. № 3.
- Kasyanov A.O. Tvist-polyarizatory na osnove mikropoloskovykh difraktsionnykh reshetok. Antenny. 2002. № 5(60). S. 34−39.
- Delihacioglu K., Uckun S. Power reflection and transmission coefficients for meander-line polarizers with a chiral slab. ETRI Journal. February 2003. V. 25. № 1. P. 41−48.
- Kasyanov A.O. Primenenie pechatnykh difraktsionnykh reshetok dlya upravleniya polyarizatsiei elektromagnitnykh voln mikrovolnovogo diapazona. Izvestiya YuFU. Tekhnicheskie nauki. 2022. № 3. S. 38−60. DOI 10.18522/ 2311-3103-2022-3-38-60.
- Kasyanov A.O. Transformatory polyarizatsii elektromagnitnykh voln mikrovolnovogo diapazona na osnove pechatnykh difraktsionnykh reshetok. Izvestiya YuFU. Tekhnicheskie nauki. 2021. № 6. S. 17−34. DOI 10.18522/ 2311-3103-2021-6-17-34.
- Kasyanov A.O., Chernyshev A.S. Prokhodnye i otrazhatelnye difraktsionnye reshetki, sostavlennye iz TFH-pechatnykh pereizluchatelei. Izvestiya YuFU. Tekhnicheskie nauki. S. 100−101.
- Kasyanov A.O., Sumatokhin K.V. Rezultaty chislennogo modelirovaniya polyarizatorov na osnove mikropoloskovykh difraktsionnykh reshetok meandrovogo tipa. Izvestiya YuFU. Tekhnicheskie nauki. S. 98−99.
- Kasyanov A.O. Preobrazovanie polyarizatsii elektromagnitnykh voln s pomoshchyu pechatnykh difraktsionnykh reshetok v mikrovolnovom diapazone. Elektromagnitnye volny i elektronnye sistemy. 2022. № 1. S. 11−31. DOI: https://doi.org/10.18127/j15604128-202201-02
- Ulig P., Novikov A. i dr. Integratsiya antenn v mnogosloinye keramicheskie podlozhki. Tekhnologii v elektronnoi promyshlennosti. 2010. № 4. S. 54−60.
- Kasyanov A.O. Mikrovolnovye polyarizatory na osnove pechatnykh difraktsionnykh reshetok meandrovogo tipa. Izvestiya YuFU. Tekhnicheskie nauki. 2022. № 6. S. 172−192. DOI 10.18522/2311-3103-2022-6-172-192.