350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2023 г.
Article in number:
Zero effects field in electrodynamic experimental observations
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202301-03
UDC: 537.226.621.317
Authors:

V.P. Krylov1

1JSC «ORPE «Technologiya» named after A. G. Romashin (Obninsk, Kaluga Region, Russia)

Abstract:

At a research in free space of angular and frequency dependences of the reflected wave on a dielectric plate areas of abnormal attenuation of amplitude and, at the same time, change of a phase on π which are called areas of zero effects under certain conditions are observed. There is a question of a possibility of observation of similar effects in other areas of radio engineering. Purpose of article – experimental confirmation of emergence of conditions of emergence of areas of zero effects in the field of the waveguide equipment.

It is considered emergence of zero effects in the waveguide equipment and experimental measurements of frequency dependences of amplitudes and phases of coefficients of reflection and transfer from the waveguide resonator with the entered dielectric core are presented. It is shown that use for control of depth of introduction of a dielectric core with high dielectric permeability in the resonator, allows to receive abnormally high absorption of coefficients of reflection and transfer of the waveguide resonator.

Practical importance. As a result of the taken experimental measurements the waveguide design of the volume resonator with the entered dielectric core with high dielectric permeability which can be used as a separate waveguide element when designing measuring systems, in particular, the rejection of filters is found.

Pages: 21-27
For citation

Krylov V.P. Zero effects field in electrodynamic experimental observations. Electromagnetic waves and electronic systems. 2023. V. 28. № 1. P. 21−27. DOI: https://doi.org/10.18127/j15604128-202301-03 (in Russian)

References
  1. Egorov V.N. Kharakteristiki rezonatorov sverkhvysokikh chastot s nerezonansnym prosachivaniem moshchnosti. Izvestiya VUZov. Ser. «Radiofizika». 2010. T. 53. № 8. S. 493−503. (in Russian)
  2. Martin L.P., Suter J.J., Rosen M. Sapphire resonator transducer accelerometer for space gravity gradiometry. J. Phys. D. Appl. Phys. 1994. V. 27. P. 875−880.
  3. Wolf P., Clairon A., at all. Test of Lorents invariance using a microwave Resonator. Phys. Rev. Lett. 2003. V. 90. № 6. Art № 060402.
  4. Locke C.R., Tobar M.E. Measurement of the strain-induced coefficient of permittivity of sapphire using whispering gallery modes excited in a high-Q acoustic sapphire oscillaror. Meas. Sci Technol. 2004. V. 15. P. 2145−2149.
  5. Egorov V.N. Rezonansnye metody issledovaniya dielektrikov na SVCh. Pribory i tekhnika eksperimenta. 2007. № 2. S. 5−38. (in Russian)
  6. Mandelshtam L.I. Lektsii po optike, teorii otnositelnosti i kvantovoi mekhanike. M: Nauka. 1972. 439 c. (in Russian)
  7. Drude P. Optika. L.-M: ONTI. 1935. (in Russian)
  8. Born M. Optika. Uchebnik elektrodinamicheskoi teorii sveta: Per. s nem. V.M. Konovalova. Pod red. I.V. Obremova. ONTI. Nauchno-tekhnich. izd-vo Ukrainy. Kharkov. Kiev. 1937. S. 59. (in Russian)
  9. Von Hippel I.A. Dielectric Materials and Applications. Technology Press of MIT and John Wiley & Sons. New York. 1954. P. 291−429.
  10. Krylov V.P.. Journal of physics: Conference Series IOP Physics. T. 2140 (2021) 012026. doi:10.1088/1742-6596/2140/1/012026.
  11. Krylov V.P. Issledovanie otrazhennoi volny ot dielektricheskoi plastiny v oblasti nulevykh effektov. Radiotekhnika. 2022. T. 86. № 6. S. 131−140. DOI:https://doi.org/10.18127/j00338486-202206-16. (in Russian)
  12. Azzam R., Basharaa N. Ellipsometry and polarized light. Amst. N.Y. Oxford: North-Holland Publishing company. 1977.
  13. Kizel V.A. Otrazhenie sveta. (Ser. «Fizika i tekhnika spektralnogo analiza»). M.: Nauka. 1973. (in Russian)
Date of receipt: 07.12.2022
Approved after review: 21.12.2022
Accepted for publication: 11.01.2023