350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2023 г.
Article in number:
O-type traveling-wave tube double-frequency mode simulation
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202301-02
UDC: 621.385.6
Authors:

Ch.-Z. Nguyen1, D.G. Kovtun2

1,2 Volgograd State Technical University (Volgograd, Russia)

Abstract:

O-type traveling wave tube amplifiers are widely used in engineering and science, but multifrequency mode has been little studied, especially for electromagnetic waves in terahertz frequency range. This paper presents esults of processes’s numerical simulation in an O-type traveling-wave tube in the terahertz range in the multifrequency mode based on time domain finite difference method for Maxwell's equations and particle-in-cell method. Analysis of data obtained during the simulation makes it possible to clearly demonstrate the nonlinear interaction of two waves with an electron beam and obtain output power distribution depending on input power.

The cold electrodynamic parameters of the slow-wave system and its optimal geometric dimensions, providing a wide bandwidth and acceptable coupling resistance, are taken from. The absorber used has electrical conductivity σ = 50 Ω−1m−1, which corresponds to the properties of graphite, and its geometry is optimized for amplification of 184 GHz wave.

The introduction of two signals into TWT leads to appearance of interaction already in the initial sections of interaction space. The phenomena are associated with the redistribution of energy between certain components of frequency spectrum, which occurs due to a change in the amplification process of phase relationships between signals, as a result of which individual components’s amplification of the spectrum is accompanied by a weakening of oscillations at adjacent frequencies.

The obtained results show that: a) the output power in double-frequency mode is less than, corresponding to the same distribution of input powers, the sum of two output powers in single-frequency. This can be explained by the fact that some of electrons can simultaneously be in the decelerating phase of one and the accelerating phase of the other wave, b) output wave powers. There is a condition for obtaining the same output powers of two waves: the input power of 184 GHz wave = 0.3 the input power of 180 GHz wave.

Pages: 12-20
For citation

Nguyen Ch.-Z., Kovtun D.G. O-type traveling-wave tube double-frequency mode simulation. Electromagnetic waves and electronic systems. 2023. V. 28. № 1. P. 12−20. DOI: https://doi.org/10.18127/j15604128-202301-02 (in Russian)

References
  1. Kozlov D.S., Odit M.A., Vendik I.B., Roh Y.-G., Cheon S., Lee C.-W. Tunable terahertz metamaterial based on resonant dielectric inclusions with disturbed Mie resonance. Appl. Phys. A. Materials Science & Processing. March 2012. V. A106. № 3. P. 465−470.
  2. Munina I.V., Yashchenko V.N., Vendik I.B., Birgermeier S. Perestraivaemyi napravlennyi otvetvitel na osnove fotonnykh kristallov dlya TGts diapazona chastot. Sb. trudov konf. «Elektronika i mikroelektronika SVCh». Sankt-Peterburg. 2−5 iyunya 2014. S. 286−288. (in Russian)
  3. Chan W.L., Deibel J., Mittleman D.M. Imaging with terahertz radiation. Reports on Progress in Physics. 2007. V. 70. № 8. P. 1325−1379.
  4. Maagt P. Terahertz technology for space and earth applications. First European Conference on Antennas and Propagation. 6−10 November 2006. P. 1−4.
  5. Booske J.H., Dobbs R.J., Joye C.D., Kory C.L., Neil G.R., Park G.S., Park J.H., Temkin R.J. Vacuum electronic high power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. № 1. P. 54−75.
  6. Shin Y.-M., Barnett L.R., Luhmann N.C. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation. IEEE Trans. Electron Device. 2009. V. 56. № 5. P. 706−712.
  7. Shin Y.M., Baig A., Barnett L.R., Luhmann N.C., Pasour J., Larsen P. Modeling investigation of an ultrawideband terahertz sheet beam traveling-wave tube amplifier circuit. IEEE Trans. Electron Devices. 2011. V. 58. № 9. P. 3213−3219.
  8. Baig A., Gamzina D., Kimura T., Atkinson J.E.,Domier C., Popovic B., Himes L., Barchfeld R. Field M., Luhmann N.C. Performance of a nano-CNC machined 220-GHz trave-ling wave tube amplifier. IEEE Trans. Electron Devices. 2017. V. 64. № 5. P. 2390−2397.
  9. Shin Y.-M., Baig A., Barnett L.R., Tsai W.-C., Luhmann N.C., System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier. IEEE Trans. 2012. V. 59. № 1. P. 234−240.
  10. Karetnikova T.A., Rozhnev A.G., Ryskin N.M., Torgashov G.V., Sinitsyn N.I., Grigorev Yu.A., Grigorev Yu.A., Burtsev A.A., Shalaev P.D. Modelirovanie lampy begushchei volny subteragertsevogo diapazona s zamedlyayushchei sistemoi tipa sdvoennoi grebenki i lentochnym elektronnym puchkom. Radiotekhnika i elektronika. 2016. T. 61. № 1. S. 54−60. (in Russian)
  11. Nguen Ch.Z., Alikov S.A., Shein A.G., Kovtun D.G., Ilin E.M. Trekhmernoe modelirovanie protsessov v lampe begushchei volny teragertsevogo diapazona. Elektromagnitnye volny i elektronnye sistemy. 2021. T. 26. № 1. S. 45−54. (in Russian)
  12. Zhelezovskii B.E., Kalyanov E.V. Mnogochastotnye rezhimy v priborakh SVCh. M.: Svyaz. 1978. 256 s. (in Russian)
  13. Sergienko A.B. Tsifrovaya obrabotka signalov: Ucheb. posobie. Izd. 3-e. SPb.: BKhV-Peterburg. 2011. 768 s. (in Russian)
  14. Svid. o gos. registratsii programmy dlya EVM № 2021613359 ot 5 marta 2021 g. Rossiiskaya Federatsiya. Chislennoe modelirovanie raboty elektrovakuumnogo SVCh pribora v mnogochastotnom rezhime. Nguen Ch.Z., Kovtun D.G., pravoobladatel: FGBOU VO VolgGTU. 2021. (in Russian)
Date of receipt: 06.12.2022
Approved after review: 20.12.2022
Accepted for publication: 11.01.2023