350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2023 г.
Article in number:
Analytical approach to the study of electromagnetic radiation of an oscillating thin film
DOI: https://doi.org/10.18127/j5604128-202301-01
UDC: 537.86
Authors:

A.V. Kharlanov1

1 Volgograd State Technical University (Volgograd, Russia)

Abstract:

Oscillating charged objects create variable fields in the space around them. One of these objects is a spherical thin film. Such films can be either created artificially or have a natural origin. Spherical double phospholipid layer is the basis of most living cells. On the outside and inside of a living cell there are ions of different signs. In the process of vital activity, the cell membrane performs acoustic oscillations, therefore, the charges at the membrane surface also oscillate. Accordingly, the cell emits an electromagnetic wave. This makes it possible to expand the scope of application towards the field of electronics, considering biological objects for information processing systems and new devices – bioelectronics. It is also useful from the point of view of the physical mechanisms of interaction of living objects. Any living organism is not a separate object – it is in constant contact with other organisms. This contact is carried out at all levels of the organization of living matter: from cells to whole organisms. Living matter is constantly exchanging information. It can be transmitted both directly, by contact of organisms, and at a distance. Therefore, the study of the generation of electromagnetic waves carrying information is of great interest. The paper considers the generation of fields by such a film. An analytical expression was found for the field created in space by a spherical film. It is shown how different types of acoustic oscillations of films affect the generated fields. The intensity of the electric field decreases rapidly with increasing distance. The higher the oscillation mode, the faster it decreases. In this case, the magnetic field takes on a very small value. Thus, since the radiation of the film depends on the oscillation parameters (type, frequency, amplitude, phase), and, consequently, on the state of the film and the environment, it can be concluded that this radiation can have informational meaning, that is, to determine the parameters of the media. Also, such films can be used to convert signals by exciting acoustic oscillations with an external signal and then registering the fields generated by the film. The results of the article can also be useful for medical purposes.

Pages: 5-11
For citation

Kharlanov A.V. Analytical approach to the study of electromagnetic radiation of an oscillating thin film. Electromagnetic waves and electronic systems. 2023. V. 28. № 1. P. 5−11. DOI: https://doi.org/10.18127/j15604128-202301-01 (in Russian)

References
  1. Gulyaev Yu.V., Dmitriev A.S., Itskov V.V. i dr. Yacheika priemnika radiosveta. Radiotekhnika i elektronika. 2018. T. 63. № 9. S. 947−952 (in Russian).
  2. Gulyaev Yu.V. Fizicheskie polya i izlucheniya cheloveka. Novye neinvazivnye metody meditsinskoi diagnostiki. M.: RBOF «Znanie» im. S.I. Vavilova. 2009 (in Russian).
  3. Nicolini C. From neural chip and engineered biomolecules to bioelectronic devices: An overview. Biosensors and Bioelectronics. 1995. V. 10. № 1−2. P. 105−127.
  4. Scholkmann F., Fels D., Cifra M. Non-chemical and non-contact cell-to-cell communication: a short review. American Journal of Translational Research. 2013. № 5. P. 586−593.
  5. Davis D.M., Sowinski S. Membrane nanotubes: dynamic long-distance connections between animal cells. Nature Reviews Molecular Cell Biology. 2008. № 9. P. 431−436.
  6. Karsenty G., Olson E.N. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell. 2016. № 164. P. 1248−1256.
  7. Tuszynski J.A., Wenger C., Friesen D.E., Preto J. An Overview of Sub-Cellular Mechanisms Involved in the Action of TTFields. International Journal of Environmental Research and Public Health. 2016. V. 13. № 11: 1128.
  8. Anfossi S., Babayan A., Pantel K., Calin G.A. Clinical utility of circulating non-coding RNAs – an update. Nature Reviews Clinical Oncology. 2018. № 15. P. 541−563.
  9. Cifra M., Fields J.Z., Farhadi A. Electromagnetic cellular interactions. Progress in Biophysics and Molecular Biology. 2011. V. 105. № 3. P. 223−246.
  10. Bogatina N.I. i dr. Vliyanie kombinirovannogo magnitnogo polya na gravitropicheskuyu reaktsiyu rastenii i spektr elektromagnitnogo izlucheniya generiruemogo imi v protsesse rosta. Izbrannye trudy III Mezhdunar. kongressa «Slabye i sverkhslabye polya i izlucheniya v biologii i meditsine». 1−4 iyulya 2003. SPb gosudarstvennyi elektrotekhnicheskii universitet. SPb. 2003. S. 19−21. (in Russian)
  11. Gall L.N. Novoe napravlenie nauki – izuchenie deistviya slabykh i sverkhslabykh faktorov fizicheskoi i khimicheskoi prirody na biologicheskie sistemy. Izbrannye trudy IV Mezhdunar. kongressa «Slabye i sverkhslabye polya i izlucheniya v biologii i meditsine». 3−7 iyulya 2006. S. 1−9. (in Russian)
  12. Rubin A.B. Biofizika: Uchebnik dlya biologicheskikh spetsialnostei vuzov. V 2‑kh kn.: M.: Vysshaya shkola. 1987. Kn. 2. (in Russian)
  13. Golant M.B. Acousto-electric waves in cell membranes of living organisms – a key problem for understanding of mm-waves interaction with living organisms. Biological aspects of low intensity millimeter waves. Edited by academician Devyatkov N.D. and professor Betskii O.V. Moscow. 1994. P. 229−249.
  14. Nikolskii V.V., Nikolskaya T.I. Elektrodinamika i rasprostranenie radiovoln. M.: Nauka. 1989. 544 s. (in Russian)
  15. Shein A.G., Kharlanov A.V. Poperechnye akusticheskie kolebaniya kletki i vliyanie na nee elektromagnitnykh voln nizkoi intensivnosti// Biomeditsinskie tekhnologii i radioelektronika. 2006. № 4. S. 15−20. (in Russian)
  16. Kharlanov A.V. Izluchenie kletki. Elektromagnitnye volny i elektronnye sistemy. 2012. № 3. S. 22−27. (in Russian)
  17. Fedorchenko A.M. Teoreticheskaya fizika. Klassicheskaya elektrodinamika: Ucheb. posobie. Kiev: Vyshcha shkola. 1988. (in Russian)
  18. Zargano G.F., Shein A.G., Kharlanov A.V. Elektrodinamicheskii analiz izlucheniya nabora koleblyushchikhsya dipolei. Radiotekhnika i elektronika. 2021. T. 66. № 11. S. 1061−1065. (in Russian)
  19. Mors F.M., Feshbakh G. Metody teoreticheskoi fiziki. T. 2. M.: IL. 1960. 897 s. (in Russian)
  20. Betskii O.V., Lebedeva N.N. Sovremennye predstavleniya o mekhanizmakh vozdeistviya nizkointensivnykh millimetrovykh voln na biologicheskie ob'ekty. Millimetrovye volny v biologii i meditsine. 2001. № 3. S. 5−19. (in Russian)
  21. Zinin P.V., Allen J.S. Deformation of biological cells in the acoustic field of an oscillating bubble. Physical Review E. 2009. 79(2 Pt 1):021910.
  22. Kharlanov A.V. Forced acoustic oscillations of biological cell. Bioelectromagnetics. 2017. V. 38. № 8. P. 613−617.
Date of receipt: 05.12.2022
Approved after review: 19.12.2022
Accepted for publication: 11.01.2023