350 rub
Journal Electromagnetic Waves and Electronic Systems №6 for 2022 г.
Article in number:
Frequency interrogator based on a photonic integrated circuit for optical acoustic emission sensors
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202206-10
UDC: 681.586.5
Authors:

V.V. Ivanov¹, G.S. Voronkov², A.G. Zakoyan³, I.V. Stepanov⁴, A.V. Voronkova⁵, R.V. Kutluyarov⁶, E.P. Grakhovna⁷

1−7 Ufa University of Science and Technology (Ufa, Russia)

Abstract:

Optical sensors and interrogation systems are critical nowadays. The article discusses the frequency interrogation method based on an optoelectronic oscillator for acoustic emission measurement systems and a photonics-integrated interrogator. The optoelectronic oscillator consists of a phase modulator and a feedback circuit, which includes an optical notch filter, a photodiode, and an amplifier. The output frequency of microwave oscillations at the output of the optoelectronic oscillator is determined by the change in the resonant frequency of the filter in the feedback circuit. In the scheme under consideration, the phase-shifted Bragg grating is used as a notch filter. Physical impact (for example, deformation or acoustic impact) causes a change in the Bragg wavelength and, consequently, a change in the frequency of microwave oscillations at the output of the optoelectronic oscillator. The measuring signal of the interrogator makes it possible to determine the parameters of the acoustic impact. To measure the frequency of these oscillations, the interrogation circuit is supplemented with a frequency conversion unit, which makes it possible to reduce the values of the measured frequency, thereby reducing the complexity and cost of the measuring equipment and increasing the degree of integration of the sensing system. To verify the proposed method, a simulation of the frequency interrogation system was carried out for the case of a change in the amplitude of acoustic emission signals from 3∙10-12 m to 3∙10-11 m. Considering the proposed frequency conversion scheme, the performance of the interrogation system was estimated. It amounted to 12.5 MHz. Simulation confirms the possibility of application and effectiveness of the proposed method in non-destructive testing systems. It is shown that the proposed scheme can be used in non-destructive testing applications, including the detection and evaluation of microcrack growth dynamics. The analysis of platforms for manufacturing photonic integrated circuits and elements for implementing the frequency converter shows the feasibility of the presented scheme. The interrogator can be produced on the SOI (silicon on insulator) platform or on InP, however, in this case, the dimensions of the photonic integrated circuit will increase significantly. As an element base for frequency conversion, electronic components manufactured by Analog Devices, Texas Instruments, UMS, Quorvo, Milandr and Miran can be used.

Pages: 73-81
References
  1. Othonos A., Kalli K. Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing. Norwood: Artech House. 1999.
  2. Bogaerts W. et al. Silicon microring resonators. Laser & Photonics Reviews. 2012. T. 6. № 1. S. 47−73.
  3. Soltani M., Yegnanarayanan S., Adibi A. Ultra-high Q planar silicon microdisk resonators for chip-scale silicon photonics. Optics express. 2007. T. 15. № 8. S. 4694−4704.
  4. Yao J. Microwave photonics for high-resolution and high-speed interrogation of fiber Bragg grating sensors. Fiber and Integrated Optics. 2015. T. 34. № 4. S. 204−216.
  5. Nureev I.I. Radiofotonnye amplitudno-fazovye metody interrogatsii kompleksirovannykh datchikov na osnove volokonnykh reshetok Bregga. Inzhenernyi vestnik Dona. 2016. T. 41. № 2. S. 19. (in Russian)
  6. Słowikowski M. et al. Photonic Integrated Interrogator for Monitoring the Patient Condition during MRI Diagnosis. Sensors. 2021. T. 21. № 12. S. 4238.
  7. Ruzakov I.A. Monitoring deformatsionnogo sostoyaniya elementov konstruktsii iz PKM na osnove volokonno-opticheskikh datchikov (obzor). Trudy VIAM. 2019. № 4 (76). S. 88−98. (in Russian)
  8. Yao J. Microwave photonic sensors. Journal of Lightwave Technology. 2020. T. 39. № 12. S. 3626−3637.
  9. Yao J. Photonic generation of microwave arbitrary waveforms. Opt. Commun. 2011. V. 284. № 15. P. 3723−3736.
  10. Chew S.X. et al. Optoelectronic oscillator based sensor using an on-chip sensing probe. IEEE Photonics Journal. 2017. T. 9. № 2. S. 1−9.
  11. Yao J. Optoelectronic oscillators for high speed and high resolution optical sensing. Journal of Lightwave Technology. 2016. T. 35. № 16. S. 3489−3497.
  12. Giacobbe A. et al. Fast FBG sensor interrogation method based on silicon microring resonators. IEEE SENSORS. 2020. S. 1−4.
  13. Yang F. et al. Highly Sensitive Integrated Photonic Sensor and Interrogator Using Cascaded Silicon Microring Resonators. Journal of Lightwave Technology. 2022. T. 40. № 9. S. 3055−3061.
  14. Zhang W., Yao J. Silicon photonic integrated optoelectronic oscillator for frequency-tunable microwave generation. Journal of Lightwave Technology. 2018. T. 36. № 19. S. 4655−4663.
  15. Wu Q., Okabe Y., Yu F. Ultrasonic structural health monitoring using fiber Bragg grating. Sensors. 2018. T. 18. № 10. S. 3395.
  16. Golovastikov N.V., Bykov D.A., Doskolovich L.L. Temporal differentiation and integration of 3D optical pulses using phase-shifted Bragg gratings. Computer Optics. 2017. T. 41. № 1. S. 13−21.
  17. Sun X. et al. Fabrication and Sensing Application of Phase Shifted Bragg Grating Sensors. Materials. 2022. T. 15. № 10. S. 3720.
  18. Wu Q. et al. Application of an optical fiber sensor for nonlinear ultrasonic evaluation of fatigue crack. IEEE Sensors Journal. 2019. T. 19. № 13. S. 4992−4999.
  19. Wu Q., Okabe Y., Yu F. Ultrasonic structural health monitoring using fiber Bragg grating. Sensors. 2018. T. 18. № 10. S. 3395.
  20. Muanzuala L. et al. Measuring the linewidth of a stabilized diode laser. arXiv preprint arXiv:1510.03683. 2015.
  21. Application Report Dramatically Improve Your Lock Time with VCO Instant Calibration. https://www.ti.com/lit/an/snaa342/ snaa342.pdf?ts=1655282529812&ref_url=https%253A%252F%252Fwww.google.com%252F (data obrashcheniya: 24.10.2022).
  22. Venghaus H., Grote N. Fibre Optic Communication: Key Devices. Springer Series in Optical Sciences. Springer International Publishing. 2017.
  23. Soref R. Tutorial: Integrated-photonic switching structures. Apl Photonics. 2018. T. 3. № 2. S. 021101.
  24. Hosseini N. et al. Stress-optic modulator in TriPleX platform using a piezoelectric lead zirconate titanate (PZT) thin film. Optics express. 2015. T. 23. № 11. S. 14018−14026.
Date of receipt: 28.10.2022
Approved after review: 18.11.2022
Accepted for publication: 28.11.2022