350 rub
Journal Electromagnetic Waves and Electronic Systems №6 for 2022 г.
Article in number:
Synthesis of diplexer with closely situated pass-bands for mobile communication systems
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202206-04
UDC: 621.396
Authors:

K.V. Kobrin1, V.A. Rudakov2, Li Zimeng3, V.A. Sledkov4, M.B. Manuilov5

1,5 Southern Federal University (Rostov-on-Don, Russia)

2−4 Guangzhou Compass Technology Co Ltd, (Guangzhou, China)

Abstract:

A novel design of diplexer for base stations of mobile communications operating within frequency bands 1710-1880/1920-2170 MHz is proposed. Diplexer is implemented on the base of inter-digital filters and it has compact design consisting of the all-metal housing including filters and T-junction of coaxial lines with rectangular cross section. The efficient combined technique for synthesis of diplexer is suggested, which is based on utilizing of coupling matrices and full-wave 3D simulation. Since the diplexer has the closely situated pass bands, the filters characteristics slope should be increased. The additional bent resonator is introduced into design to form the attenuation pole, which frequency may be tuned in accordance with specifications of diplexer. The proposed diplexer is characterized with high impedance matching and isolation (S11 < −22 dB, S32 < –23 dB), as well as low insertion loss (about 0.2 dB).

Pages: 28-37
For citation

Kobrin K.V., Rudakov V.A., Li Zimeng, Sledkov V.A., Manuilov M.B. Synthesis of diplexer with closely situated pass-bands for mobile communication systems. Electromagnetic waves and electronic systems. 2022. V. 27. № 6. P. 28−37. DOI: https://doi.org/10.18127/j15604128-202206-04 (in Russian)

References
  1. Cameron R.J., Kudsia C.M., Mansour R.R. Microwave filters for communication systems: fundamentals, design and applications. Hoboken, NJ: Wiley. 2018.
  2. Mansour R.R. RF Filters and Diplexers for Wireless System Applications: State-of-the-Art and Trends // Proceedings of Radio and Wireless Conference. 2003. RAWCON'03. P. 373−376.
  3. Hunter I.C., Billonet L., Jarry B., Guillon P. Microwave Filters - Applications and Technology // IEEE Transaction on Microwave Theory and Techniques. 2002. V. 50. № 3. P. 794−805.
  4. Macchiarella G., and Tamiazzo S. Synthesis of Star-Junction Multiplexers // IEEE Transaction on Microwave Theory and Techniques. 2010. V. 58. № 12. P. 3732−3741.
  5. Zhao P., Wu K.L. An Analytical Approach to Synthesis of Diplexers with an Optimal Lumped-element Junction Model // IEEE MTT‑S International Microwave Symposium (IMS2014). 3 p.
  6. Zhang Z.-C., Chu Q.-X., Wong S.-W., Feng S.-F., Zhu L., Huang Q.-T., Chen F.-C. Triple-Mode Dielectric-Loaded Cylindrical Cavity Diplexer Using Novel Packaging Technique for LTE Base-Station Applications // IEEE Transactions on Components, Packaging and Manufacturing Technology. 2016. V. 6. № 3. P. 383−389.
  7. Wu K.L. Recent Progress in Non-planar Microwave Filters – from Theory and Practices //Asia Pacific Microwave Conference (APMC 2012). Kaohsiung, Taiwan. 4−7 December 2012. P. 388−390.
  8. Pelliccia L., Cacciamani F., Cazzorla A., Tiradossi D., Vallerotonda P., Sorrentino R., Steffè W., Vitulli F., Picchione E., Galdeano J., Martìn-Igleasias P. Compact On-board L-band Dielectric-loaded Diplexer for High-power Applications // 49th European Microwave Conference. 2019. Paris, France. P. 61−64.
  9. Kobrin K.V., Rudakov V.A., Sledkov V.A., Li Zimeng, Manuilov M.B. A Novel Design of Wideband Diplexer for Base Station Applications // Proceedings of IEEE Conference on Radiation and Scattering of Electromagnetic Waves (RSEMW-2019). 2019. P. 148−151.
  10. Kobrin K.V., Rudakov V.A., Li Z., Manuilov M.B. A Novel High-Performance Diplexer for Mobile Communication Base Stations // Journal of Electromagnetic Waves and Applications. 2021. V. 35. № 2. P. 1273−1289.
  11. Kobrin K., Rudakov V., Li Z., Sledkov V., Manuilov M. A Novel Diplexer Design with Closely Situated Pass-bands for Base Stations of Mobile Communications // Proceedings of IEEE 7th All-Russian Microwave Conference (RMC-2020). Moscow. 2020. P. 176−179.
  12. Matthaei G.L., Young L., Jones M.T. Microwave Filters, Impedance-Matching Networks, and Coupling Structures. New York, McGraw-Hill. 1964. V. 1, 2.
  13. Ansys HFSS, https://www.ansys.com.
  14. Kobrin K., Manuilov M. Fast full-wave technique for CAD of polarizers based on double-ridge waveguide sections // Journal of Electromagnetic Waves and Applications. 2020. V. 34. № 1. P. 70−85.
  15. Gerini G., Guglielmi M. Full-Wave CAD of a Rectangular Waveguide Filter with Integrated Coaxial Excitation // IEEE Transaction on Microwave Theory and Techniques. 2001. V. 49. № 5. P. 986−990.
Date of receipt: 27.10.2022
Approved after review: 17.11.2022
Accepted for publication: 28.11.2022