350 rub
Journal Electromagnetic Waves and Electronic Systems №6 for 2022 г.
Article in number:
Miniaturization of a radiometric microwave receiver of medical multichannel multi-frequency radiothermograph
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202206-01
UDC: 621.382
Authors:

A.G. Gudkov1, V.G. Tikhomirov2, V.V. Popov3, Yu.V. Solov’ev4, S.V. Chizhikov5, R.V. Agandeev6

1,5 Bauman Moscow State Technical University (Moscow, Russia)

2 St. Petersburg State Electrotechnical University «LETI» (St. Petersburg, Russia)

3 PJSC «Svetlana» (St. Petersburg, Russia)

4 JSC «Svetlana-Electronpribor» (St. Petersburg, Russia)

Abstract:

The method of microwave radiothermometry (RTM-method) allows to get information about the internal temperature of the patient's tissues by measuring the intensity of their own electromagnetic radiation in the range of ultra-high frequencies and can be used in various fields of medicine for early diagnosis of cancer. Measurement of the power of the noise signal coming from the antenna output occurs in microwave receivers - radiothermometers, which have a number of significant requirements.

One of the possible ways to ensure compliance with these requirements is the use of modern microelectronics technologies and modern semiconductor microwave element base for various purposes in a monolithic design, which will increase the variability of circuit solutions in the development of modern medical microwave radiothermometers and, thereby, ensure their optimal characteristics and expand the functionality of devices. With this aim, the overview of the element base made in the form of monolithic integrated circuits (MIC) for use in medical radiometers was completed and presented in the article.

The analytical review of the MIC microwave element base for use in medical radiothermometers has shown wide opportunities in the field of circuit solutions based on the domestic element component base. The use of monolithic integrated circuits for various purposes based on semiconductor heterostructures materials group A3B5 allows to ensure the required performance of the radiometer in terms of reception, amplification and processing of the microwave signal, to significantly increase functionality and implement structural performance with a significant reduction in weight and size characteristics of the developed medical device.

The research was carried out with the financial support of the Russian science Foundation in the framework of agreement No. 19-19-00349-П in the theme: «A method and a multichannel multifrequency microwave radiothermography on the basis of monolithic integrated circuits for finding the 3D distribution and dynamics of brightness temperature in the depths of the human body».

Pages: 5-12
For citation

Gudkov A.G., Tikhomirov V.G., Popov V.V., Solov’ev Yu.V., Chizhikov S.V., Agandeev R.V. Miniaturization of a radiometric microwave receiver of medical multichannel multi-frequency radiothermograph. Electromagnetic waves and electronic systems. 2022. V. 27. № 6. P. 5−12. DOI: https://doi.org/10.18127/j15604128-202206-01 (in Russian)

References
  1. Gudkov A.G., Verba V.S., Gandurin V.A., Leushin V.Yu., Plyushchev V.A. Ispolzovanie metodov radiolokatsii v radiochastotnom i opticheskom diapazonakh dlya vyyavleniya patologii zhivykh tkanei cheloveka. Materialy 16‑i Mezhdunar. Krymskoi konf. «SVCh-tekhnika i telekommunikatsionnye tekhnologii» (KryMi-Ko’2006). Sevastopol. 2006. T. 2. S. 903−904. (in Russian)
  2. Gudkov A.G., Shashurin V.D., Chizhikov S.V. i dr. Ispolzovanie metoda mnogokanalnoi mikrovolnovoi radiometrii dlya funktsionalnoi diagnostiki golovnogo mozga. Meditsinskaya tekhnika. 2019. № 2 (314). S. 22−25. (in Russian)
  3. Gulyaev Yu.V., Verba V.S., Gandurin V.A., Gudkov A.G., Plyushchev V.A., Leushin V.Yu., Tsyganov D.I. Passivnye i aktivnye radiolokatsionnye metody issledovanii i diagnostiki zhivykh tkanei cheloveka. Biomeditsinskie tekhnologii i radioelektronika. 2006. № 11. S. 14−20. (in Russian)
  4. Sedankin M.K., Leushin V.Yu., Gudkov A.G., Vesnin S.G., Khromov D.A., Porokhov I.O., Sidorov I.A., Agasieva S.V., Gorlacheva E.N. Modelirovanie sobstvennogo teplovogo izlucheniya pochki v mikrovolnovom diapazone. Meditsinskaya tekhnika. 2019. № 1. S. 44−47. (in Russian)
  5. Vesnin S., Sedankin M., Ovchinnikov, Leushin V., Skuratov V., Nelin I., Konovalova A. Research of a microwave radiometer for monitoring of internal temperature of biological tissues. Eastern-European Journal of Enterprise Technologies. 2019. 4/5 (100).
  6. Gulyaev Yu.V., Leushin V.Yu., Gudkov A.G., Shchukin S.I., Vesnin S.G., Kublanov V.S., Porokhov I.O., Sedankin M.K., Sidorov I.A. Pribory dlya diagnostiki patologicheskikh izmenenii v organizme cheloveka metodami mikrovolnovoi radiometrii. Nanotekhnologii: razrabotka, primenenie. 2017. T. 9. № 2. S. 27−45. (in Russian)
  7. Statsenko L.G., Pugovkina O.A. Proektirovanie SVCh-ustroistv dlya mikrovolnovoi radiotermometrii. Izvestiya YuFU. Tekhnicheskie nauki. 2014. № 10. S. 127−135. (in Russian)
  8. Agasieva S.V., Gudkov A.G., Tikhomirov V.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kniga 3. Pod red. Vyuginova V.N., Gudkova A.G. i Popova V.V. M.: OOO NTP «Virazh-Tsentr». 2016. 252 s. (in Russian)
  9. Gudkov A.G., Popov V.V., Chalykh A.E. i dr. Ustroistva SVCh i antennye sistemy. Kn. 2. Modelirovanie, proektirovanie i tekhnologii SVCh-ustroistv i FAR.. Pod. red. A.Yu. Grineva. M.: Radiotekhnika. 2014. 198 s. (in Russian)
  10. Gudkov A.G. Protsess razrabotki novogo vysokotekhnologichnogo naukoemkogo tovara. Naukoemkie tekhnologii. 2003. T. 4. № 6. S. 69−83. (in Russian)
  11. Gudkov A.G. Kompleksnaya tekhnologicheskaya optimizatsiya meditsinskoi tekhniki na vsekh etapakh ee zhiznennogo tsikla. Biomeditsinskaya radioelektronika. 2012. № 5. S. 51−61. (in Russian)
  12. Gudkov A.G. Radioapparatura v usloviyakh rynka. Kompleksnaya tekhnologicheskaya optimizatsiya. M.: SAINS-PRESS. 2008. 336 s. (in Russian)
  13. Chizhikov S.V., Solov’ev Yu.V. Element base of microwave MIC for microwave ragiothermometry. Nanotechnology: development and application – XXI century. 2020. V. 12. № 2. P. 48−57.
  14. Chizhikov S.V., Solov’ev Yu.V., Gudkov A.G. Application of developed MIC LNA in microwave radiometry equipment // Journal of Physics Conference Series. 2020. 1695(1):012161.
  15. Tikhomirov V.G. et al. Monolithic transistor switch for microwave radiometry // 8 th International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures «Saint Petersburg OPEN 2021». Book of Abstracts. 2021. P. 492−493.
  16. Tikhomirov V.G., Solov’ev Yu.V. Gudkov A.G. et al. Monolithic transistor switch for microwave radiometry // Journal of Physics Conference Series. 2021. 2068(1): 012049
  17. Ridley B.K., Ambacher O., Eastman L.F. The polarization-induced electron gas in a heterostructure // Semiconductor Science and Technology. 2000. V. 15. № 3. P. 270−271.
  18. Foutz B.E., Otleary S.K., Shur M.S. et al. Electron Transport in the III–V Nitride Alloys // MRS Online Proceedings Library. 1999. V. 572. 445.
  19. Bernardini F., Fiorentini V., Vanderbilt D. Polarization-Based Calculation of the Dielectric Tensor of Polar Crystals // Physical Review Letters. 1997. V. 79. № 20. 3958.
Date of receipt: 24.10.2022
Approved after review: 14.11.2022
Accepted for publication: 28.11.2022