350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2022 г.
Article in number:
Influence of noise of photogrammetric system estimation on accuracy of determining parameters of sighting target
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202205-05
UDC: 004.932.4
Authors:

D.A. Roshchin1

1 Research and Test Center of Railway Troops of Russia Defense Ministry (Moscow, Russia)

Abstract:

The accuracy of the measurement results of the photogrammetric system depends on the noise level in the image of the measuring object. Any image received by a photodetector contains additive noise, which does not depend on the parameters of the measuring object and does not correlate with its image. Therefore, the main problem is to identify the causes of noise in the image and find ways to suppress it. With the help of a sighting target, the effect of the noise of the photogrammetric system on the accuracy of determining the parameters of the measuring object is estimated. The main factors influencing the noise characteristics of the photodetector device and, as a consequence, the accuracy of determining the coordinates of the sighting target in the image are revealed. The reduction of the influence of these factors was achieved by cooling the photodetector of the photogrammetric system, increasing its illumination level, as well as using the procedure of high-frequency filtering in the frequency domain of the image of the sighting target. As a result of these actions, the signal-to-noise value increased by 67.3%. At the same time, the relative error of measuring the radius and coordinates of the sighting target decreased by 2.9% and to 0.44%, respectively. Reducing the noise level in the image of the measuring object made it possible to increase the accuracy of the photogrammetric system when determining its parameters.

Pages: 34-41
For citation

Roshchin D.A. The influence of the noise of the photogrammetric system estimation on the accuracy of determining the parameters of the sighting target. Electromagnetic waves and electronic systems. 2022. V. 27. № 5. P. 34−41. DOI: https://doi.org/10.18127/j15604128-202205-05 (in Russian)

References
  1. Parakhuda R.N., Litvinov B.Ya. Informatsionno-izmeritelnye sistemy: Pismennye lektsii. SPb.: SZTU. 2002. 74 s.
  2. Federalnyi informatsionnyi fond po obespecheniyu edinstva izmerenii. Gosudarstvennyi reestr sredstv izmerenii. [Elektronnyi resurs]. Rezhim dostupa: https://fgis.gost.ru/fundmetrology/registry. (in Russian)
  3. Pavlov V.I. Fotogrammetriya. Teoriya odinochnogo snimka i stereoskopicheskoi pary snimkov: Ucheb. posobie. Sankt-Peterburgskii gosudarstvennyi gornyi institut (tekhnicheskii universitet). Izd. 2-e, pererabot. i dopolnennoe. SPb. 2006. 175 s. (in Russian)
  4. Chugreev I.G., Usova N.V., Vladimirova M.R. Osnovy geodezii: Uchebno-metodicheskoe posobie. M.: MIIGAiK. 2017. 146 s. (in Russian)
  5. Vinogradov A.V., Voitenko A.V. Sovremennye tekhnologii geodezicheskikh izyskanii: Ucheb. posobie. Omsk: SibADI. 2012. 111 s. (in Russian)
  6. Song Y., Fan R., Huang S., et al. A three-stage real-time detector for traffic signs in large panoramas. Computational Visual Media. 2019. № 5. P. 403–416. DOI:10.1007/s41095-019-0152-1.
  7. Roshchin D.A. Otsenka vliyaniya vizualnykh priznakov vizirnoi tseli na veroyatnost obnaruzheniya optiko-elektronnym ustroistvom. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2021. T. 19. № 1. S. 5–13. DOI: 10.18127/j20700814-202101-01. (in Russian)
  8. Gonsales R., Vuds R. Tsifrovaya obrabotka izobrazhenii. M.: Tekhnosfera. 2005. 1072 s. (in Russian)
  9. Gorbachev A.A., Korotaev V.V., Yaryshev S.N. Tverdotelnye matrichnye fotopreobrazovateli i kamery na ikh osnove. SPb.: NIU ITMO. 2013. 98 s. (in Russian)
  10. Torshina I.P., Yakushenkov Yu.G. Vybor priemnika izlucheniya pri proektirovanii optiko-elektronnogo pribora: Ucheb. posobie. M.: Izd-vo MIIGAiK. 2017. 58 s. (in Russian)
  11. Gauer Dzh. Opticheskie sistemy svyazi: Per. s angl. M.: Radio i svyaz. 1989. 504 s. (in Russian)
  12. Istochniki shumov v PZS-kamerakh. URL: https://www.microsystemy.ru/info/articles/istochniki-shumov-v-pzs-kamerakh/ (data obrashcheniya: 20.07.2022). (in Russian)
  13. Julliand T., Nozick V., Talbot H. Image Noise and Digital Image Forensics. Digital-Forensics and Watermarking. Eds.  Shi Y.Q., Kim H., Pérez-González F., Echizen I. IWDW 2015. Lecture Notes in Computer Science. V. 9569. Springer, Cham. DOI: 10.1007/978-3-319-31960-5_1.
Date of receipt: 15.08.2022
Approved after review: 29.08.2022
Accepted for publication: 22.09.2022