350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2022 г.
Article in number:
Experimental substantiation of manufacturing technologies of charcoal-containing electromagnetic absorbers
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202205-03
UDC: 628.518:538.87
Authors:

E.S. Belousova1, O.V. Boiprav2, S.E. Savanovich3

1−3 Belarusian state university of informatics and radioelectronics (Minsk, Belarus)

Abstract:

This article presents the results of a research of charcoal-containing electromagnetic absorbers creation based on charcoal particles incorporating into a fibrous matrix of a semi-synthetic non-woven material. A technology of incorporating charcoal particles into a fiber matrix has been developed, one step of which is keeping in a thermal transfer press for 10 minutes at a temperature of 150 °C for fixing charcoal particles in a fibrous matrix. By analysis of electron microscopic images it was found that coal particles are fixed in the interfiber space and on the fibers. Based on the incorporation of activated carbon particles into a fibrous matrix by impregnating it with a mixture of an aqueous solution of surfactants and charcoal, electromagnetic absorbers with a reflection coefficient of –14 dB in the frequency range of 2–17 GHz can be created. However, such absorbers are not resistant to deformation. Therefore, it is recommended to use a mixture of an aqueous solution with a polyvinyl acetate dispersion with activated charcoal, it provides a reflection coefficient -18 dB and a transmission coefficient of -13 dB in the frequency range of 2-17 GHz. charcoal-containing electromagnetic absorbers is placed between two layers of woven material containing an adhesive layer for additional pressurization. The charcoal-containing absorber can be used to decorate the premises of anechoic chambers, to hide objects from radar reconnaissance equipment, to manufacture human protection equipment from electromagnetic radiation, to ensure the electromagnetic compatibility of electronic equipment. As a result, a charcoal-containing electromagnetic absorber was obtained with a reflection coefficient of –18 dB, and transmission coefficient of –13.8 dB at a frequency of 2–17 GHz. Charcoal-containing electromagnetic absorber can be recommended to use in various industries and sciences.

Pages: 21-27
For citation

Belousova E.S., Boiprav O.V., Savanovich S.E. Experimental substantiation of manufacturing technologies of charcoal-containing electromagnetic absorbers. Electromagnetic waves and electronic systems. 2022. V. 27. № 5. P. 21−27.
DOI: https://doi.org/10.18127/j15604128-202205-03 (in Russian)

References
  1. Gulbin V.N., Kolpakov N.S., Polivkin V.V., Gorkavenko V.V., Shutov F.A. Radiozashchitnye poristye materialy. Naukoemkie tekhnologii. 2016. № 2. S. 57−62. (in Russian)
  2. Pikul A.I., Trefilov N.A., Egorova E.V., Shpak A.V., Markin A.A., Avetisov A.S., Krutov M.M. Analiz parametrov dielektricheskikh SVCh-materialov. Antenny. 2013. № 4 (191). S. 66−69. (in Russian)
  3. Pulko T.A., Nasonova V.N., Davydov M.V., Osipov A.N., Lynkov L.M. Kompozitsionnye vlagosoderzhashchie struktury dlya imitatsii biologicheskoi tkani. Biomeditsinskaya radioelektronika. 2011. № 3. S. 9−15. (in Russian)
  4. Bortsov A.N., Knyazev N.G., Kuznetsov K.A., Kurdyumov O.A. Optimizatsiya bezekhovykh kamer v detsimetrovom diapazone dlin voln. Antenny. 2019. № 6. S. 58−65. (in Russian)
  5. Ponomarenko V.I., Popov V.V., Lagunov I.M. Radiopogloshchayushchaya struktura na osnove mikroprovodov. Elektromagnitnye volny i elektronnye sistemy. 2016. T. 21. № 4. S. 74−79. (in Russian)
  6. Belousova E.S., Mokhamed A.M.A., Al-Ademi Ya.T.A. Gibkie uglerodosoderzhashchie poglotiteli elektromagnitnogo izlucheniya na osnove voloknistykh materialov. Doklady BGUIR. 2017. № 2 (104). S. 63−68. (in Russian)
  7. Belousova E.S., Al-Makhdavi M.S.Kh., Boiprav O.V. Eksperimentalnoe obosnovanie sposoba polucheniya gibkikh ekranov elektromagnitnogo izlucheniya, osnovannogo na inkorporirovanii ugleroda allotropnykh form v voloknistye matritsy. Vestnik Polotskogo gosudarstvennogo universiteta. Ser. S, Fundamentalnye nauki. 2019. № 12. S. 15−20. (in Russian)
  8. GOST 6217-74. Ugol aktivnyi drevesnyi droblenyi. Tekhnicheskie usloviya. 2003. 8 s. (in Russian)
  9. GOST 25441-90. Polotna kleenye prokladochnye. Obshchie tekhnicheskie usloviya. 1990. 7 s. (in Russian)
  10. GOST 18992-80. Dispersiya polivinilatsetatnaya gomopolimernaya grubodispersnaya. Tekhnicheskie usloviya. M. 2001. 21 s. (in Russian)
  11. Kondratenko V.I. Otrazhenie elektromagnitnoi volny ot metallo-dielektricheskoi struktury. Problemy fiziki, matematiki i tekhniki. 2016. № 1 (26). S. 34−36. (in Russian)
  12. GOST 20271.1–91. Izdeliya elektronnye SVCh. Metody izmereniya elektricheskikh parametrov. 1991. 93 s. (in Russian)
Date of receipt: 11.07.2022
Approved after review: 25.07.2022
Accepted for publication: 22.09.2022