350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2022 г.
Article in number:
Attenuation of electromagnetic waves and oscillations in natural passive elements
Type of article: scientific article
DOI: https://doi.org/10.18127/j5604128-202205-01
UDC: 537.86
Authors:

A.V. Kharlanov1, T.S. Kharlanova2

1,2 Volgograd State Technical University (Volgograd, Russia)

Abstract:

The ubiquity of electromagnetic waves in everyday life and technology poses new challenges to modern science. One of such tasks is the interaction of electromagnetic waves with passive elements of natural origin (biological objects). This will ensure progress both from the point of view of the medical use of radio waves, and from the point of view of finding new elements of electronic devices and studying their characteristics. Objects such as cells and grains can be considered as open spheroidal resonators, and arteries and veins as open cylindrical waveguides. However, unlike passive elements of artificial origin, the dielectric permittivity of biological objects is always complex, which worsens the characteristics of radio-electronic elements. Therefore, an important task is to assess the influence of the imaginary part of the permittivity on the flow of electromagnetic processes in biological objects. This is also important from the point of view of studying the parameters of biological objects, since different states are characterized by different parameters and, consequently, different flow of wave processes. The article deals with the problems of excitation of electromagnetic oscillations and waves in passive elements of natural origin. An electrodynamic analysis of the oscillations of a cell presented as an open resonator and the propagation of waves in a blood vessel presented as an open waveguide, taking into account the complex dielectric permittivity, was carried out. The natural frequencies of electromagnetic oscillations of cells lie in the terahertz range, which is extremely promising from an applied point of view. The obtained Q-factor values show that such fluctuations are feasible from a physical point of view. The operating frequencies of veins and arteries are in the gigahertz range. It is shown that, despite the large attenuations compared to artificial resonators and waveguides, their natural analogues (cells and arteries) can also be considered as passive elements, which can be useful when considering the influence of electromagnetic waves on living objects, including for medical purposes. The dependence of energy absorption on the permittivity can also be used to determine the electrical characteristics of media. The results can be useful in radio electronics and biomedical applications.

Pages: 5-13
For citation

Kharlanov A.V., Kharlanova T.S. Attenuation of electromagnetic waves and oscillations in natural passive elements. Electromagnetic waves and electronic systems. 2022. V. 27. № 5. P. 5−13. DOI: https://doi.org/10.18127/j15604128-202205-01 (in Russian)

References
  1. Galka A.G., Martusevich A.K., Yanin D.V. i dr. Rezonansnoe blizhnepolnoe SVCh-zondirovanie ozhogovykh ran. Radiotekhnika i elektronika. 2020. № 9. S. 911−918. (in Russian)
  2. Eskin V.A., Kudrin A.V., Popova A.A. Vozbuzhdenie elektromagnitnogo polya v kompaktnom nervnom volokne sistemoi nitevidnykh elektricheskikh tokov. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika. 2019. T. 62. № 1. S. 72−84. (in Russian)
  3. Yaekashiwa N., Yoshida H., Otsuki S., Hayashi S., Kawase K. Verification of Non-thermal Effects of 0.3−0.6 THz-Waves on Human Cultured Cells. Photonics. 2019. V. 6. № 1: 33.
  4. Il’ina I.V., Sitnikov D.S., Agranat M.B. State-of-the-Art of Studies of the Effect of Terahertz Radiation on Living Biological Systems. High Temperature. 2018. № 56. P. 789−810.
  5. Petrov A.A., Moraleva A.A., Antipova N.V., Amirov R.Kh., Samoylov I.S., Savinov S.Y. The Action of the Pulsed Electric Field of the Subnanosecond Range on Human Tumor Cells. Bioelectromagnetics. 2022. V. 43. № 5. P. 327−335.
  6. Owens R., Kjall P., Richter-Dahlfors A., et al. Organic bioelectronics – Novel applications in biomedicine. Biochimica et Biophysica Acta. 2013. V. 1830. № 9. P. 4283−4285. (in Russian)
  7. Zargano G.F., Shein A.G., Kharlanov A.V. Elektrodinamicheskii analiz sobstvennykh kolebanii sferoidalnykh dielektricheskikh rezonatorov. Izvestiya vysshikh uchebnykh zavedenii. Radiofizika. 2021. № 6. S. 484−492. (in Russian)
  8. Kharlanov A.V. Stroenie zerna zlakovykh i elektromagnitnye kolebaniya. Elektromagnitnye volny i elektronnye sistemy. 2010. № 6. S. 34−39. (in Russian)
  9. Shein A.G., Kharlanova T.S. Features of electromagnetic wave propagation in two- and three-layer cylindrical dielectric waveguides. ITM Web of Conferences. 2019. V. 30. 10 p.
  10. Zargano G.F., Shein A.G., Kharlanova T.S. Issledovanie uslovii maksimalnoi kontsentratsii moshchnosti v dielektricheskom volnovodnom kanale. Fizicheskie osnovy priborostroeniya. 2021. T. 10. № 1 (39). S. 48−56. (in Russian)
  11. Vainshtein L.A. Otkrytye rezonatory i otkrytye volnovody. M.: Sov. radio. 1966. 467 s. (in Russian)
  12. Komarov I.V., Ponomarev L.I., Slavyanov S.Yu. Sferoidalnye i kulonovskie sferoidalnye funktsii. M.: Nauka. 1976. 320 s. (in Russian)
  13. Spravochnik po spetsialnym funktsiyam. Pod red. M. Abramovitsa i I. Stigan. M.: Nauka. 1979. 831 s. (in Russian)
  14. Dielektricheskie rezonatory. Pod red. M.E. Ilchenko. M.: Radio i svyaz. 1989. 328 s. (in Russian)
  15. Semenov N.A. Tekhnicheskaya elektrodinamika. M.: Svyaz. 1973. 480 s. (in Russian)
  16. Cifra M. Electrodynamic eigenmodes in cellular morphology. BioSystems. 2012. V. 109. № 3. P. 356−366.
  17. Wilmink G., Ibey B., Tongue T., et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. Journal of Biomedical Optics. 2011. 16. 047006.
  18. Gabriel S., Lau R.W., Gabriel C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Physics in medicine and biology. 1996. V. 41. № 11. P. 2271−2293.
  19. Faktorova D. Temperature dependence of biological tissue complex permittivity at microwave frequencies. Advances in Electrical and Electronic Engineering. 2008. V. 7. № 1−2. P. 354−357.
Date of receipt: 21.07.2022
Approved after review: 28.07.2022
Accepted for publication: 22.09.2022