A.V. Kolesnikov1, D.V. Fedosov2, A.V. Nikolaev3
1,2 KV-SVYAZ (Omsk, Russia)
3Moscow Technical University of Communication and Informatics (Moscow, Russia)
3Mechanical Engineering Research Institute (Moscow, Russia)
Currently, the search for the possibility of organizing reliable two-way wireless through-the-earth (TTE) communications is relevant. This method of organizing communications is in demand in the mining industry. The existing methods and means of TTE communication are based on powerful radio stations with large dimensions of the antenna devices of the VLF range. This range was chosen due to the lower specific absorption of electromagnetic waves in the rock. A promising way of organizing two-way TTE communications is the use of portable radio stations of the medium frequency (MF) range using effective electrically small antennas. Since the electrical characteristics of the rock are influenced by climatic and geophysical factors, its important parameters are moisture, which affects electrical conductivity, and porosity, which affects water saturation. Modeling the characteristics of underground communication channels in the range from 1 kHz to 10 MHz at different rock moisture and porosity is the goal of a scientific article. The analysis took into account the following factors: attenuation of electromagnetic signals, antenna efficiency, noise. The use of resonant antennas allows you to match to obtain a VSWR of less than 1.2. Natural noises from the IEEE recommendations were used. As a rule, the distance between adjacent horizontal workings, for example, drifts or adits, does not exceed 100 m, therefore the length of the analyzed TTE-lines is taken equal to 50 and 100 m. As a result, estimates of budget losses in the underground communication channel through dry and wet rock, as well as wet rock with different porosity were obtained. At high frequencies, the effect of moisture and porosity on dielectric constant and conductivity is much higher than at low frequencies. The difference between the budget of the channel through dry or wet (w = 5%) rock is tens of dB. Estimates of the communication range for low-speed PSK31 channels for rocks saturated with fresh and salt waters are presented. The simulation results can be used to determine the effective zones for the location of stationary and mobile communication points of the MF range, including to provide emergency communication for miners and rescuers. At the same time, the presence of guidance lines, which are conductors of induced electromagnetic waves, will only increase the range and reliability of underground communications.
- Yan L., Zhou Ch., Reyes M., Whisner B., Damiano N. Mathematical modeling and measurement of electric fields of electrode-based through-the-earth (TTE) communication. Radio Science. 2017. V. 52. № 6. P. 731−742. DOI: https://doi.org/10.1002/2016RS006242.
- Damiano N., Yan L., Whisner B., Zhou Ch. Simulation and measurement of Through-the-Earth, extremely low-frequency signals using copper-clad steel ground rods. IEEE Transactions on Industry Applications. 2017. V. 53. № 5. P. 5088−5095. DOI: https://doi.org/10.1109/TIA.2017.2703625.
- Hao J., Mou Y., Yan B. Impact of rods configuration on electrodes impedance of Through-the-Earth communication system. International Journal of Hybrid Information Technology. 2017. V. 10. № 8. P. 101−110. DOI: http://dx.doi.org/10.14257/ijhit.2017.10.8.08.
- Zhou Ch., Damiano N. Wireless Channel and Electromagnetic Environments for Through-the-earth (TTE) Communications in an Underground Coal Mine. 2021 IEEE Radio and Wireless Symposium (RWS), 17−22 Jan. 2021. DOI: https://doi.org/10.1109/RWS50353.2021.9360383.
- Barkand Th.D., Damiano N.W., Shumaker W.A. Through-the-Earth, two-way, mine emergency, voice communication systems. Conference Record of the 2006 IEEE Industry Applications Conference Forty-First IAS Annual Meeting. 8−12 Oct. 2006. DOI: https://doi.org/10.1109/IAS.2006.256640.
- Jong E.C., Schafrik S.J., Gilliland E.S. A preliminary evaluation of a Through-the-Earth (TTE) communications system at an underground coal mine in Eastern Kentucky Mining. Mining Engineering. 2016. V. 68. № 4. P. 52−57. DOI: https://doi.org/10.19150/me.6548.
- Yan L., Waynert J.A., Sunderman C. Measurements and Modeling of Through-the-Earth Communications for Coal Mines. IEEE Transactions on industry applications. 2013. V. 49. № 5. P. 1979−1983. DOI: https://doi.org/10.1109/TIA.2013.2260116.
- Liu Y., An Zh., Wang Q., Pan R., Liu X., Liu J. Research on Intrinsic-safe Through-the-Earth radio communication system technology with large depth. 2020 12th International Conference on Communication Software and Networks. 12−15 June 2020. DOI: https://doi.org/10.1109/ICCSN49894.2020.9139108.
- Carreno J.P., Silva L.S., Almeida Nevis S.O., Aguayo L., Braga A.J., Barreto A.N., Uzeda Garcia L.G. Through-the-Earth (TTE) communications for underground mines. Journal of Communication and Information Systems. 2016. V. 31. № 1. P. 164−176. DOI: https://doi.org/10.14209/jcis.2016.15.
- Carreno J.P., Barreto A.N., Braga J. Propagation loss and apparent conductivity models for Through-the-Earth communication in sedimentary soil. IET Microwaves, Antennas & Propagation. 2019. V. 13 № 9. P. 1382−1388. DOI: https://doi.org/10.1049/iet-map.2018.5793.
- Carreno J.P., Braga J. Stochastic Generation of Subsurface Profiles for Realistic Simulation of Through-the-Earth Communication Systems. International Journal of Antennas and Propagation. V. 2019. DOI: https://doi.org/10.1155/2019/6361218.
- Kudinov D.S., Kokhonkova E.A., Romanov V.V., Neverov A.S. Evaluation of the possibility of wireless data transmission through rocks using an electromagnetic channel. JPCS. 2019. V. 1399. № 13. DOI: https://doi.org/10.1088/1742-6596/1399/3/033096.
- Shaydurov G.Y., Kudinov D.S., Kokhonkova E.A., Shchitnikov A.A. Through-the-Earth communication in underground mines by electromagnetic waves. 2016 International Siberian Conference on Control and Communications (SIBCON). 12−14 May 2016. DOI: https://doi.org/10.1109/SIBCON.2016.7491771.
- Nikolaev A.V. Vliyanie ukryvayushchei sredy na glubinu zondirovaniya v nelineino-parametricheskoi lokatsii. Spetstekhnika i svyaz. 2011. № 1. S. 26−32. (in Russian)
- Nikolaev A.V. Ispolzovanie elektromagnitnogo spektra pri nelineino-parametricheskoi lokatsii rukotvornykh ob’ektov v poluprovodyashchikh sredakh. Spetstekhnika i svyaz. 2011. № 1. S. 37−43. (in Russian)
- Forooshani A.E., Bashir S., Michelson D.G., Noghanian S. A survey of wireless communications and propagation modeling in underground mines. IEEE Communications Surveys & Tutorials. 2013. V. 15. № 4. P. 1524−1545. DOI: https://doi.org/10.1109/SURV.2013.031413.00130.
- Patri A., Nayak A., Jayanthu Dr.S. Wireless communication systems for underground mines – A critical appraisal. International Journal of Engineering Trends and Technology (IJETT). 2013. V. 4. № 7. P. 3149−3153. URL = http://www.ijettjournal.org/archive/ijett-v4i7p174 (data obrashcheniya: 06.08.2021).
- Fedosov D.V., Nikolaev A.V., Kolesnikov A.V. Byudzhet podzemnogo kanala besprovodnoi svyazi skvoz gornuyu porodu. Zhurnal radioelektroniki [elektronnyi zhurnal]. 2021. № 9. DOI: https://doi.org/10.30898/1684-1719.2021.9.11. (in Russian)
- Semenov A.S. Elektrorazvedka metodom estestvennogo elektricheskogo polya. L.: Nedra. 1980. 446 s. (in Russian)
- Yakubovskii Yu.V. Elektrorazvedka. M.: Nedra. 1980. 384 s. (in Russian)
- Dortman N.B. Fizicheskie svoistva gornykh porod i poleznykh iskopaemykh (petrofizika). Spravochnik geofizika. M.: Nedra. 1984. 455 s. (in Russian)
- Brylkin Yu.L., Dubman L.I. O dielektricheskoi pronitsaemosti gornykh porod osadochnogo proiskhozhdeniya. Geologiya i geofizika. 1972. № 1. S. 117−121. (in Russian)
- Garrough A.A. A Systematic Study Revealing Resistivity Dispersion in Porous Media. The Log Analyst. 1999. V. 40. № 4. P. 271−279.
- Talalov A.D., Daev D.S. Vzaimosvyaz koeffitsienta pronitsaemosti s kompleksnoi elektroprovodnostyu gornykh porod v chastotnom diapazone 104 − 5·108 Gts. Izvestiya VUZov. Geologiya i razvedka. 2004. № 5. S. 27−32. (in Russian)
- Talalov A.D., Daev D.S. Vzaimosvyaz chastotnoi dispersii elektricheskikh parametrov gornykh porod s ikh petrofizicheskimi kharakteristikami. Izvestiya VUZov. Geologiya i razvedka. 2003. № 5. S. 52−56. (in Russian)
- Shamsutdinov M.M., Tashtanbaeva V.O. Vybor i obosnovanie rabochikh chastot v shakhtnom stvole. Izvestiya KGTU im. I. Razzakova. 2018. № 2(46). S. 311−317. (in Russian)
- Rekomendatsiya MSE-R P.372-11. Radioshum [online]. URL = https://www.itu.int/dms_pubrec/itu-r/rec/p/R-REC-P.372-11-201309-S!!PDF-R.pdf (data obrashcheniya: 22.11.2021). (in Russian)
- Hansen R.C. Electrically small, superdirective, and superconducting antennas. Wiley-Interscience. 2006. 168 p.
- Fedosov D.V., Kolesnikov A.V., Nikolaev A.V. Advanced MF antennas for underground communications. JPCS. 2021. V. 1862. DOI: https://doi.org/10.1088/1742-6596/1862/1/012002.
- Rembovsky A. Modulation and signal types in modern radioelectronic means. Radio monitoring. Lecture notes in electrical engineering. V. 43. Springer, Boston, MA. 2009. DOI: https://doi.org/10.1007/978-0-387-98100-0_6.
- Helman D.S. Earth electricity: a review of mechanisms which cause telluric currents in the lithosphere. Annals of Geophysics. 2014. V. 56. № 5. 17 p. DOI: https://doi.org/10.4401/ag-6184.
- Constable C. Earth’s electromagnetic environment. Surveys in Geophysics. 2016. V. 37. P. 27−45. DOI: https://doi.org/10.1007/s10712-015-9351-1.
- Pat. RF № 2680674, MPK H01Q9/04 Rezonansnaya spiralnaya antenna. Fedosov D.V., Kolesnikov A.V., Nikolaev A.V.; zayavl. 14.03.2018; opubl. 25.02.2019. Byul. № 6. (in Russian)
- Fedosov D.V., Kolesnikov A.V., Nikolaev A.V., Starchenkov A.V. Titovets P.A. Calorimetric method for measurement of electrically small antennas efficiency. 2021 Systems of signals generating and processing in the field of on board communications, conference proceedings. 2021. DOI: https://doi.org/10.1109/IEEECONF51389.2021.9416092.