A.B. Golius¹, K.V. Kozlov², V.F. Los'³, E.I. Starovoitov⁴
¹−⁴ JSC «Concern «Vega» (Moscow, Russian)
In this paper, an airborne surveillance radar is considered, designed to study the underlying surface and control the meteorological situation in the S- and UHF-band. SINS based on laser gyros, as part of the micro-navigation system is designed to improve the quality of radar information of the surveillance radar, and is installed on the structure of the antenna device of under radar's radome. The measurement error of the micronavigation system is determined primarily by the measurement errors of its sensitive elements affected by an external electromagnetic field. Thus, SINS can effectively perform its task only with small values of electromagnetic fields, generated by the radar's radiation at its location. The problem is to check the fulfillment of these requirements in the specific conditions of the radar and SINS placement. The placement of the equipment on board the aircraft must be carried out in accordance with the requirements of electromagnetic compatibility. With prolonged operation of the micro-navigation system, errors accumulate and correction from GNSS is required. In case of interference suppression of satellite navigation receiver, it is impossible SINS corrections from GNSS during radar radiation sessions. This can lead to a deterioration in the quality of radar data (especially in the SAR mode).
Purpose of article – to determinate the estimated values of the electromagnetic situation in the immediate vicinity of the SINS body. Since the geometric complexity of the design elements of the radar equipment under the fairing is a factor that prevents a strict electrodynamic formulation of the problem, approximate methods were used to achieve the purpose of this work. Estimates of the electromagnetic situation at the location of the SINS body from various sources of radiation are obtained: radar components, power cables, the reflection of the radar's radiation from the radome's inner wall. An expression is obtained for determining the permissible time interval between corrections of SINS from GNSS, at which there is no deterioration in the quality of the acquired SAR data. The obtained estimates can be used for the rational placement of radio-electronic equipment on board the carrier aircraft in accordance with the requirements of the electromagnetic compatibility.
Golius A.B., Kozlov K.V., Los' V.F., Starovoitov E.I. Evaluation of electromagnetic effects on SINS with laser gyros, installed under radar's radome. Electromagnetic waves and electronic systems. 2021. V. 26. № 6. P. 17−28. DOI: https://doi.org/10.18127/ j15604128-202106-02 (in Russian)
- Antipov V.N., Vikentev A.Yu., Koltyshev E.E. i dr. Aviatsionnye sistemy radiovideniya. Pod red. G.S. Kondratenkova. M.: Radiotekhnika. 2015. 648 s. (in Russian)
- Chernodarov A.V., Patrikeev A.P., Bilik V.V., Kovregin V.N. Prostranstvenno-raspredelennaya sistema mikronavigatsii dlya radiolokatora s sintezirovannoi aperturoi. Doklady XVIII Sankt-Peterburgskoi Mezhdunar. konf. po integrirovannym navigatsionnym sistemam. 2011. S. 185−194. (in Russian)
- Chernodarov A.V., Patrikeev A.P., Kovregin V.N., Kovregina G.M., Merkulova I.I. Letnaya otrabotka raspredelennoi sistemy inertsialnosputnikovoi mikronavigatsii dlya radiolokatora s sintezirovannoi aperturoi. Nauchnyi vestnik MGTU GA. 2017. T. 20. № 1. S. 222−231. (in Russian)
- Karpov O.A., Titov M.P., Tsvetkov O.E. Metodika eksperimentalnoi proverki prigodnosti navigatsionnykh datchikov dlya mikronavigatsionnogo obespecheniya RSA. Molodezhnaya shkola-konf. II Vseros. Armandovskie chteniya «Murom'2012». V Vseros. nauchnaya konf. «Radiofizicheskie metody v distantsionnom zondirovanii sred». 26.06.2012−28.06.2012. S. 532−537. (in Russian)
- Chernov V.M. Uchet geometricheskogo faktora snizheniya tochnosti v rassredotochennykh po ob'ektu integrirovannykh inertsialnosputnikovykh sistemakh mikronavigatsii i navigatsii. Sb. dokladov na nauchnoi sessii GUAP. Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya. 2016. Ch.1. Tekhnicheskie nauki. S. 223−225. (in Russian)
- Chernodarov A.V., Patrikeev A.P., Borzov A.B., Merkulova I.I. Kontrol, diagnostika i optimizatsiya struktury raspredelennykh inertsialnykh navigatsionnykh sistem. Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk. 2016. T. 18. № 4(7). S. 1456−1464. (in Russian)
- Petrov Yu.V., Byzov A.N., Petrov N.Yu., Yukhno S.A. Analiz vliyaniya destabiliziruyushchikh faktorov na iskazheniya traektornykh signalov v bortovom radiolokatore vysokogo razresheniya. Vestnik VGU. Ser. «Sistemnyi analiz i informatsionnye tekhnologii». 2015. № 1. S. 67−75. (in Russian)
- Ilin E.M., Kozorez D.A., Krasilshchikov M.N., Polubekhin A.I., Savostyanov V.Yu., Sypalo K.I. Oblik bortovoi integrirovannoi navigatsionnoi sistemy letatelnogo apparata, obespechivayushchei vysokotochnoe pozitsionirovanie fazovogo tsentra antennye bortovoi RLS. Vestnik SibGUTI. 2016. № 3. S. 33−45. (in Russian)
- Bolotnov S.A., Verenikina N.M., Alekseichenko A.A. Lazernye informatsionno-izmeritelnye sistemy: Ucheb. posobie. Ch.3. Pod red. O.V. Rozhnova. M.: Izd-vo MGTU im. N.E. Baumana. 2006. 94 s. (in Russian)
- Matveev V.V., Raspopov V.Ya. Osnovy postroeniya besplatformennykh inertsialnykh navigatsionnykh sistem. SPb.: GNTs RF OAO «Kontsern «TsNII «Elektropribor». 2009. 280 s. (in Russian)
- Kulikov O.E., Shalumov A.S. Obespechenie elektromagnitnoi sovmestimosti na rannikh stadiyakh proektirovaniya radioelektronnoi apparatury: sredstva i metody realizatsii. Uspekhi sovremennoi radioelektroniki. 2011. № 1. S. 12-18. (in Russian)
- Melnikov Yu.A. Postoyannye magnity elektrovakuumnykh SVCh-priborov. M.: Sov. radio. 1967. 183 c. (in Russian)
- Yavorskii B.M., Detlaf A.A. Spravochnik po fizike. Izd-e 3-e, ispr. M.: Nauka. 1990. 622 s. (in Russian)