350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2021 г.
Article in number:
NMR signal detection in the presence of external interference
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202105-06
UDC: 621.391.8
Authors:

N.V. Anisimov1, A.A. Tarasova2, I.A. Usanov3, O.S. Pavlova4, D.A. Cheshkov5, Yu.A. Pirogov6

1,4 Faculty of Fundamental Medicine, Lomonosov Moscow State University (Moscow, Russian)

2,3,4,6 Faculty of Physics, Lomonosov Moscow State University (Moscow, Russian)

5 State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds (Moscow, Russian)

Abstract:

The specificity of NMR signal detection in presence of the pulse interference and continuous wave (CW) interference with the frequency and amplitude that vary randomly over time is considered. For scanning with the signal accumulation, we suggest saving individual signal realizations. Those that are distorted by CW interference should be excluded from summing up, and those distorted by pulse interference should be edited. For scanning without phase cycling, we propose to scan without signal accumulation, but increasing the number of phase encoding steps necessary for high SNR and editing the pulse bursts in k-space. The activity of interference in different time intervals is analyzed on the data from 2D-NMR spectroscopy and MRI. This information was used in processing NMR spectra, in planning MRI experiments, and in assessing the information value of the acquired scans. The proposed approaches were implemented on a 0.5 T clinical scanner in 23Na MRI of human organs.

Pages: 50-59
For citation

Anisimov N.V., Tarasova A.A., Usanov I.A., Pavlova O.S., Cheshkov D.A., Pirogov Yu.A. NMR signal detection in the presence of external interference. Electromagnetic waves and electronic systems. 2021. V. 26. № 5. P. 50−59. DOI: https://doi.org/10.18127/ j15604128-202105-06 (in Russian)

References
  1. Timms W.E. Interference problems and screening in NMR and MRI // J. Med. Eng. Technol. 16(2) (1992) 69−78.
  2. Andris P., Frollo I. Noise and interference in measured NMR images // Measurement 77 (2016) 29−33.
  3. Ibrahim M., Pardi D.I., Brown T.W.C., McDonald P.J. Decision Tree Pattern Recognition Model for Radio Frequency Interference Suppression in NQR Experiments // Sensors (Basel) 19(14) (2019) 3153.
  4. Ibrahim M., Pardi C.I., Brown T.W.C., McDonald P.J. Active elimination of radio frequency interference for improved signal-tonoise ratio for in-situ NMR experiments in strong magnetic field gradients // J. Magn. Reson. 287 (2018) 99−109.
  5. Ernst R.R., Bodenhausen G., Wokaun A. Principles of nuclear magnetic resonance in one and two dimensions. Clarendon Press. Oxford. 1987.
  6. Bernstein M.A., King K.F., Zhou X.J. Handbook of MRI Pulse Sequences. Elsevier Academic Press. 2004.
  7. Buess M.L., Garroway A.N., Yesinowski J.P. Removing the effects of acoustic ringing and reducing temperature effects in the detection of explosives by NQR. 5365171A. U.S. Patent. 1994.
  8. Barras J., Gaskell M.J., Hunt N., Jenkinson R.I., Mann K.R., Pedder D.A.G., Shilstone G.N., Smith J.A.S. Detection of ammonium nitrate inside vehicles by nuclear quadrupole resonance // Appl. Magn. Reson. 25 (2004) 411−437.
  9. Anisimov N.V., Pavlova O.S. Simultaneous recording of NMR signals from nuclei with different gyromagnetic ratios using undersampling technique // Appl. Magn. Reson. 49 (2018) 523−532.
  10. Anisimov N.V., Sadykhov E.G., Pavlova O.S., Fomina D.V., Pirogov Yu.A. Whole body sodium MRI at 0.5 Tesla using surface coil and long echo time sequence // Appl. Magn. Reson. 50 (2019) 1149−1161.
  11. Madelin G., Lee J.-S., Regatte R.R., Jerschow A. Sodium MRI: methods and applications // Prog. Nucl. Magn. Reson. Spectrosc. 79 (2014) 14−47.
  12. Haacke E.M., Brown R.W., Thompson M.R., Venkatesan R. Magnetic Resonance Imaging: Physical Principles and Sequence Design. NY: John Wiley & Sons. Inc. 1999.
  13. Anisimov N.V., Tarasova A.A., Pavlova O.S., Fomina D.V., Makurenkov A.M., Pavlovskaya G.E., Pirogov Yu.A. MRI coils optimized for detection of 1H and 23Na at 0.5 T // Appl. Magn. Reson. 52 (2021) 221−233.
  14. Anisimov N.V., Tarasova A.A., Pavlova O.S., Fomina D.V., Makurenkov A.M., Pavlovskaya G.E., Pirogov Yu.A. 23Na MRI on 0.5T clinical scanner // Achievements of Modern Radioelectronics 75(5) (2021) 37−45; DOI: https://doi.org/10.18127/j20700784-202104-02.
  15. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis // Nat. Methods 9(7) (2012) 671−675.
  16. Wetterling F., Corteville D.M., Kalayciyan R., Rennings A., Konstandin S., Nagel A.M., Stark H., Schad L.R. Whole body sodium MRI at 3T using an asymmetric birdcage resonator and short echo time sequence: first images of a male volunteer // Phys. Med. Biol. 57(14) (2012) 4555−4567.
  17. McVeigh E.R., Henkelman R.M., Bronskill M.J. Noise and filtration in magnetic resonance imaging // Med. Phys. 12 (1985) 586−591.
  18. Parker D.L., Gullberg G.T., Frederick P.R. Gibbs artifact removal in magnetic resonance imaging // Med. Phys. 14 (1987) 640−645.
  19. Stobbe R., Beaulieu C. Advantage of sampling density weighted apodization over postacquisition filtering apodization for sodium MRI of the human.
Date of receipt: 03.08.2021
Approved after review: 24.08.2021
Accepted for publication: 27.09.2021