350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2021 г.
Article in number:
The models of transionospheric transmission channels with amplitude fading of signals
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202105-02
UDC: 621.391.01
Authors:

V.V. Batanov1, L.E. Nazarov2

1 JSC Academician M.F. Reshetnev «ISS» (Zheleznogorsk, Russia), 

2  Fryazino branch of Kotel'nikov IRE of RAS (Fryazino, Russian)

Abstract:

Descriptions of statistical models of narrow-band transionospheric radio lines with amplitude fading of signals due to the influence of the earth’s ionosphere are given. The models are based on the analytical description of signal propagation in randomly inhomogeneous media that generate temporal variations in signal amplitudes due to their reflection and scattering on ionospheric inhomogeneities. These analytical descriptions represent Rytov’s approximate solutions for the wave equation without taking into account the anisotropy due to the influence of the Earth’s magnetic field. The stationarity of the radio line associated with the temporal and spatial statistical characteristics of random temporal and spatial fluctuations of the electron density of ionospheric irregularities is considered as a parameter of the models that is important for applications. By calculating the considered models of radio lines with the parameters of the standard mid-latitude ionosphere, estimates of the temporal stationarity of radio lines for a number of velocities of movement of ionospheric irregularities are obtained. The calculated estimated values of the temporal stationarity of the considered radio lines due to the influence of the ionosphere are useful in the development of satellite information systems, in the selection of optimal signal structures and in the development of procedures for their processing during reception and synchronization.

Pages: 15-22
For citation

Batanov V.V., Nazarov L.E. The models of transionospheric transmission channels with amplitude fading of signals. Electromagnetic waves and electronic systems. 2021. V. 26. № 5. P. 15−22. DOI: https://doi.org/10.18127/j15604128-202105-02 (in Russian)

References
  1. Spilker Dzh. Tsifrovaya sputnikovaya svyaz. Per. s angl. M.: Svyaz. 1979. 592 s. (in Russian)
  2. Kolosov M.A., Armand N.A., Yakovlev O.I. Rasprostranenie radiovoln pri kosmicheskoi svyazi. M.: Svyaz. 1969. 156 s. (in Russian) 3. Rino C.L. The theory of scintillation with applications in remote sensing. John Wiley & Sons, Hoboken, New Jersey. 2011. 244 p.
  3. Ionospheric propagation data and prediction methods required for the design of satellite services and systems. Recommendation ITU-R P.531-11. Electronic Publication. Geneva. 2012. 24 p.
  4. Nazarov L.E., Batanov V.V. Veroyatnostnye kharakteristiki obnaruzheniya radioimpulsov pri rasprostranenii po ionosfernym liniyam peredachi sputnikovykh sistem svyazi. Radiotekhnika i elektronika. 2017. T. 62. № 9. S. 866−874. (in Russian)
  5. Kutuza B.G., Moshkov A.V., Pozhidaev V.N. Kombinirovannyi metod, kotoryi ustranyaet vliyanie ionosfery pri obrabotke signalov bortovykh radiolokatorov R-diapazona s sintezirovannoi aperturoi. Radiotekhnika i elektronika. 2015. T. 60. № 9. S. 889−895. (in Russian)
  6. Bova Yu.I., Kryukovskii A.S., Lukin D.S. Rasprostranenie chastotno-modulirovannogo izlucheniya elektromagnitnykh voln v ionosfere Zemli s uchetom pogloshcheniya i vneshnego magnitnogo polya. Radiotekhnika i elektronika. 2019. T. 64. № 1. S. 3−14. (in Russian)
  7. Ivanov D.V., Ivanov V.A., Mikheeva N.N., Ryabova N.V., Ryabova M.I. Rasprostranenie korotkovolnovykh signalov s rasshirennym spektrom v srede s nelineinoi dispersiei. Radiotekhnika i elektronika. 2015. T. 60. № 11. S. 1167−1177. (in Russian)
  8. Crane R.K. Ionospheric Scintillation. Proceeding of IEEE. 1977. V. 2. P. 180−199.
  9. Nazarov L.E., Antonov D.V., Batanov V.V., Zudilin A.S., Smirnov V.M. Modeli stsintillyatsii signalov pri rasprostranenii po ionosfernym sputnikovym radioliniyam. Radioelektronika. Nanosistemy. Informatsionnye tekhnologii. 2019. T. 11. № 1. S. 57−64. (in Russian)
  10. Nazarov L.E., Smirnov V.M. Veroyatnostnye kharakteristiki priema signalov s zamiraniem pri rasprostranenii po sputnikovym ionosfernym radioliniyam. Fizicheskie osnovy priborostroeniya. 2020. T. 9. № 4(38). S. 18−23. (in Russian)
  11. Zernov N.N., Gherm V.E. Strong scintillation of GNSS signals in the inhomogeneous ionosphere: 1. Theoretical background. Radio Science. 2015. V. 50. № 2. P. 153−167.
  12. Nazarov L.E., Smirnov V.M. Otsenivanie veroyatnostnykh kharakteristik priema signalov s ispolzovaniem modelei zamiranii pri rasprostranenii po transionosfernym liniyam. Zhurnal radioelektroniki. 2020. № 11. DOI: https://doi.org/10.30898/1684-1719.2020.11.7. (in Russian)
  13. Sklyar B. Tsifrovaya svyaz. Teoreticheskie osnovy i prakticheskoe primenenie. Per. s angl. M.: Izdatelskii dom «Vilyams». 2003. 1104 c. (in Russian)
  14. Priyadarshi S. Review of Ionospheric Scintillation Models. Surveys in Geophysics. 2015. V. 36. № 2. P. 295−324.
  15. Yakovlev O.I., Yakubov V.P., Uryadov V.P. i dr. Rasprostranenie radiovoln. M.: LENAND. 2009. 496 s. (in Russian)
  16. Rytov S.M., Kravtsov Yu.A., Tatarskii V.I. Vvedenie v statisticheskuyu radiofiziku. T. 2. Sluchainye polya. M.: Nauka. 1978. 464 c. (in Russian)
  17. Levin B.R. Teoreticheskie osnovy statisticheskoi radiotekhniki. Kniga 1-ya. M.: Sov. radio. 1969. 752 s. (in Russian)
Date of receipt: 19.08.2021
Approved after review: 08.09.2021
Accepted for publication: 27.09.2021