350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2021 г.
Article in number:
Modeling of changes in the energy distribution of particles during adiabatic plasma compression
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202105-01
UDC: 537.5, 519.63
Authors:

A.Yu. Frolov1, O.V. Druzhinina2,  A.Yu. Chirkov3

1,3 Bauman Moscow State Technical University (Moscow, Russia) 

2 Federal Research Center «Computer Science and Control» of Russian Academy of Sciences (Moscow, Russia);

V.A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences (Moscow, Russia)

Abstract:

The analytical and numerical study of the Z-pinch associated with plasma instability is one of the most relevant scientific directions. The range of important problems includes the identification of possible prerequisites for the formation of the non-Maxwell spectrum of ions flowing from the Z-pinch. The approach to solving this problem is based on the description of the ionic component of the plasma by analyzing the interaction of an ideal gas with a solid wall. The construction of a modified distribution and computational experiments to study its properties are aimed at the development of computational modeling methods and Z-pinch research. The purpose of the article is to establish the fundamental possibility of forming a non-Maxwell distribution of ions in a Z-pinch by adiabatic compression of unstable plasma and to develop an approach to describing the spectrum in a Z-pinch based on modeling the processes of changing the energy distribution of particles under adiabatic compression. The processes of changing the energy distribution of particles under adiabatic compression are modeled. Computational experiments are performed and the effects associated with the influence of compression are demonstrated. It is shown that a single interaction of a substance with a moving wall leads to a shift in its energy distribution to the region of higher energies, while the deformation of the distribution itself is insignificant. The transition from a deterministic description to a stochastic one is performed using the Fokker–Planck equation. Modeling of adiabatic compression taking into account the influence of thermalization confirms that the exponential nature of the distribution is not preserved in the highenergy region. As applied to Z-pinches, this result indicates the possibility of the existence of internal mechanisms for the formation of a power-law dependence of the energy spectrum of ions flowing out of the constriction. The obtained results can serve as a basis for studying both the mechanisms of formation and the properties of the spectrum when describing phenomena in Z-pinch. The proposed models and the results obtained can be used in modeling processes in plasma.

Pages: 5-14
For citation

Frolov A.Yu., Druzhinina O.V., Chirkov A.Yu. Modeling of changes in the energy distribution of particles during adiabatic plasma compression. Electromagnetic waves and electronic systems. 2021. V. 26. № 5. P. 5−14. DOI: https://doi.org/10.18127/j15604128202105-01 (in Russian)

References
  1. Vikhrev V.V., Korolev V.D. Generatsiya neitronov v Z-pinchakh. Fizika plazmy. 2007. T. 33. № 5. S. 397−429. (in Russian)
  2. Haines M.G., Lebedev S.V., Chittenden J.P., Beg F.N., Bland S.N., Dangor A.E. The past, present and future of Z pinches. Phys. Plasmas. 2000. V. 7. № 5-2. P. 1672−1680.
  3. Coverdale C.A., Deeney C., Velikovich A.L., Clark R.W., Chong Y.K., Davis J., Chittenden J., Ruiz C.L., Cooper G.W., Nelson A.J., Franklin J., LePell P.D., Apruzese J.P., Levine J., Banister J., Qi N. Deuterium gas-puff Z-pinch implosions on the Z accelerator. Phys. Plasmas. 2007. V. 14. № 5. P. 056309-1-056309-7.
  4. Olson C., Rochau G., Slutz S. et al. Development path for Z-pinch IFE. Fusion science and technology. 2005. V. 47. P. 633−640.
  5. Kuteev B.V., Goncharov P.R., Sergeev V.Yu., Khripunov V.I. Moshchnye neitronnye istochniki na osnove reaktsii yadernogo sinteza. Fizika plazmy. 2010.T. 36. № 4. S. 307−346. (in Russian)
  6. Klir D., Kravarik J., Kubes P., Rezak K., Ananiev S.S., Bakshaev Y.L., Blinov P.I., Chernenko A.S., Kazakov E.P., Korolev V.P., Uustroev G.I., Juha L., Krasa J., Velyhan A. Neutron Energy Distribution Function Reconstructed from Time-of-Flight Signals in deuterium Gas-Puff Z-Pinch. IEEE Transactions on Plasma Science. 2009. V. 37. № 3. P. 425−432.
  7. Bakshaev Yu.L. Bryzgunov V.A., Vikhrev V.V.,Volobuev I.V. Ddanko S.A., Kazakov E.D., Korolev V.D., Klir D., MironenkoMarenkov A.D., Pimenov V.G.,Smirnova E.A., Ustroev G.I. Generatsiya i anizotropiya neitronnogo izlucheniya v kondensirovannom Zpinche. Fizika plazmy. 2014.T. 40. S. 516−530. (in Russian)
  8. Vikhrev V.V., Mironenko-Marenkov A.D. O spektre neitronov iz plazmy Z-pincha. Fizika plazmy. 2012. T. 38. № 3. S. 251−260. (in Russian)
  9. Vikhrev V.V., Frolov A.Yu., Chirkov A.Yu. Neutron yield from Z-pinches at generation of the power-degree spectrum of fast deuterons. Journal of Physics: Conference Series. 2019. V. 1370. P. 012026-1−012026-5.
  10. Garanin S.F., Mamyshev V.I. Dvumernoe MGD-modelirovanie raboty plazmennogo fokusa s uchetom uskoritelnogo mekhanizma generatsii neitronov. Fizika plazmy. 2008. T. 34. № 8. S. 695−709. (in Russian)
  11. Dulatov A.K., Krapiva P.S., Lemeshko B.D., Mikhailov Yu.V., Moskalenko I.N., Prokuratov I.A., Selifanov A.N. Osobennosti generatsii rentgenovskogo izlucheniya kamerami plazmennogo fokusa s deiterievym i deiterii-tritievym napolneniyami. Fizika plazmy. 2016. T. 42. № 1. S. 43−49. (in Russian)
  12. Akunets A.A., Ananev S.S., Bakshaev Yu.L., Blinov P.I., Bryzgunov V.A., Vikhrev V.V., Volobuev I.V., Danko S.A., Zelenin A.A., Kazakov E.D., Korolev V.D., Meshcherov B.R., Nedoseev S.L., Pimenov V.G., Smirnova E.A., Ustroev G.I., Chernenko A.S., Shchagin V.A. Obrazovanie goryachikh tochek v Z-pinche iz maloplotnogo deiterirovannogo polietilena. Fizika plazmy. 2010. T. 36. № 8. S. 747−756. (in Russian)
  13. Landau L.D., Lifshits E.M. Teoreticheskaya fizika: Ucheb. posob. dlya vuzov v 10 t. T. Kh. Lifshits E.M., Pitaevskii L.P. Fizicheskaya kinetika. 2-e izd., ispr. M.: FIZMATLIT. 2007. (in Russian)
  14. Chirkov A.Yu., Khvesyuk V.I. K raschetu funktsii raspredeleniya vysokoenergeticheskikh ionov// VANT. Ser. Termoyadernyi sintez. 2003. № 1. S. 55−65. (in Russian)
  15. Frolov A.Yu., Druzhinina O.V. Ustoichivost raznostnykh skhem chislennogo resheniya obobshchennoi sistemy uravnenii Maksvella v zadachakh modelirovaniya Z-pinchei// Elektromagnitnye volny i elektronnye sistemy. 2020. T. 25. № 3. S. 5−13. (in Russian)
Date of receipt: 01.08.2021
Approved after review: 08.08.2021
Accepted for publication: 20.08.2021