350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2021 г.
Article in number:
The broadband reflectionless filtering and matching circuit operating with high transformation ratio
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202103-04
UDC: 621.372.54
Authors:

A.V. Baranov1, A.L. Kozikov2

1,2 JSC «SPE «Salut» (N. Novgorod, Russia) 

baranov.micros@yandex.ru

Abstract:

For matching transformed impedances, various methods are known in the literature that are used reactive, dissipative, and combined circuits. The operation of such circuits is possible either in a wide frequency band, but in the same standard paths, or in a narrow frequency band when matching impedances that differ from each other by a high transformation ratio. Unfortunately, with the help of known methods, it is impossible to matching impedances with a high transformation ratio and simultaneously to operating of the circuit in a wide frequency band.

For a reflectionless high-pass filter, the task is to investigate the possibilities of expanding its operating frequencies band when matching impedances have high transformation ratio.

For a typical reflectionless high-pass filter, the reflection coefficients of its two equivalent circuits operating in even and odd excitation modes are determined. They are used to find the frequency transmission coefficients for this device, as well as the transfer functions of the complex frequency. It is established that such device has a narrow band of operating frequencies when matching impedances have a high transformation ratio. Possible ways to expand the frequency band by introducing additional electromagnetic coupling to this device are considered.

An absorbing filter-transformer with an additional electromagnetic coupling is investigated. The relations for calculating its main elements of the scheme are obtained. It is established that electromagnetic coupling in this device extends the operating frequencies band. Thus, when the magnetic coupling coefficient k tends to 1, this band can be expanded 1 1k2  times. The obtained theo-

retical conclusions are fully confirmed by experimental results.

The performed studies of reflectionless high-pass filter-transformer confirm the possibility of expanding the operating frequency band when matching impedances have high transformation. The proposed filter-transformer is recommended for use in the design of input matching circuits in power amplifiers using modern GaN transistors, for which broadband reflectionless matching is a necessary condition for eliminating parasitic excitations at low frequencies.

Pages: 27-36
For citation

Baranov A.V., Kozikov A.L. The broadband reflectionless filtering and matching circuit operating with high transformation ratio. Electromagnetic waves and electronic systems. 2021. V. 26. № 3. P. 27−36. DOI: https://doi.org/10.18127/j15604128-202103-04 (in Russian)

References
  1. Fano R.M. Teoreticheskie ogranicheniya polosy soglasovaniya proizvol’nykh impedansov. Per. s angl. M.: Sov. radio. 1965. 70 s. (in Russian)
  2. KHotuntsev Yu.L. Poluprovodnikovye SVCh ustroystva. M.: Svyaz’. 1978. 256 s. (in Russian)
  3. Ceylan O., Pires S., Marco L. Refine biasing networks for high PA low-frequency stability [Elektronnyy resurs]. Microwave and RF. April 2018. MWRF.com. URL = https://www.researchgate.net/publication/325101221.
  4. White P.E. Stability considerations when designing microwave power amplifiers [Elektronnyy resurs]. CDIAN001. CDI Website Design Resources page. Component Distributors, Inc, RF/Microwave. URL = http:. www.rf.cdiweb.com.
  5. Kogay A.V., Shishkin D.A., Arykov V.S., Erofeev E.V. Razrabotka monolitnykh integral’nykh GaAs usiliteley moshchnosti [Elektronnyy resurs]. AO «Nauchno-proizvodstvennaya firma «Mikran». 2016. 091-095.pdf. URL = http://www.mwelectronics.ru. (in Russian)
  6. Priver E.L. Ob analiticheskom reshenii zadachi shleyfnogo soglasovaniya proizvol’noy nagruzki s liniey peredachi. Trudy (devyatoy) nauchnoy konf. po radiofizike «Fakul’tet–rovesnik Pobedy». Nizhniy Novgorod. 07.05.2005. Nizhniy Novgorod: TALAM. 2005. S. 149−150. (in Russian)
  7. Priver E.L. Obobshchennyy metod sinteza i rascheta skhem prosteyshikh raspredelennykh soglasuyushchikh tsepey SVCh. Vestnik Nizhegorodskogo universiteta im. N.I. Lobachevskogo. 2009. № 4. S. 64−67. (in Russian)
  8. Mattey D.L., Yang L., Dzhons E.M.T. Fil’try SVCh, soglasuyushchie tsepi i tsepi svyazi. Pod red. Alekseeva L.V., Kushnira F.V. M.: Svyaz’. 1971. T. 1. 440 s. (in Russian)
  9. Fusko V. SVCh tsepi. Analiz i avtomatizirovannoe proektirovanie. Per. s angl. M.: Radio i svyaz’. 1990. 288 s. (in Russian)
  10. Chizhov A.I. Metod kraynikh impedansov v issledovanii SVCh-tsepey. M.: Radiotekhnika. 2014. 200 s. (in Russian)
  11. Patent № US8392495B2. MPK 2006.01 GO6 G 7/02. Reflectionless filters. Morgan M.A. March 5. 2013.
  12. Morgan M.A. Thinking outside the band: Absorptive filtering [Elektronnyy resurs]. National Radio Astronomy Observatory. March 2012. 1203.2174.pdf. URL = http://www.arxiv.org.
  13. Morgan M.A. and Boyd T.A. Synthesis of a new class of reflectionless filter prototypes [Elektronnyy resurs]. National Radio Astronomy Observatory. August 2010. 1008.3502.pdf. URL = http://www.arxiv.org.
  14. Fisher R.E. Broad-band twisted-wire quadrature hybrids. IEEE Transactions on Microwave Theory and Techniques. 1973. V. 21. № 5 (May). P. 355−357.
  15. Patent № US3514722, H03 H 7/04 (2006.01). Networks using cascaded quadrature couplers, each coupler having a different center operating frequency. Cappucci J.D.; 26 May 1970.
  16. Patent RF na izobretenie № 2174737 S2, MPK – 2006.01 NO3 N 7/12, NO1 R 1/20. Polosno-propuskayushchiy SVCh-fil’tr. KHrustalev V.A., Vostryakov Yu.V., Razinkin V.P., Rubanovich M.A.; zayavitel’ i patentoobladatel’ Novosibirskiy gosudarstvennyy tekhnicheskiy universitet; opubl. 10.10.2001; byul. № 28. (in Russian)
  17. Baranov A.V., Morugin S.L. Tranzistornye usiliteli-ogranichiteli moshchnosti garmonicheskikh SVCh kolebaniy. M.: Goryachaya liniya – Telekom. 2019. 332 s. (in Russian)
  18. Baranov A.V., Krentsin M.V. Miniatyurizatsiya transformatorov impedansov kol’tsevogo tipa. Izvestiya VUZov. Ser. Radioelektronika. 1990. № 9. S. 90−91. (in Russian)
  19. A.s. № 1578775 SSSR. MKI N01R 1/203. Polosno-zagrazhdayushchiy fil’tr. Aristarkhov G.M., Mikhnevich P.S., Chernyshov V.A. (SSSR). № 4435053/24-09; zayavl. 01.06.88; opubl.15.07.90; byul. № 26. (in Russian)
  20. Patent RF na izobretenie № 2728728. MPK – 2006.01 H03 H 7/09. Pogloshchayushchiy fil’tr-transformator. Baranov A.V., Kozikov A.L.; zayavitel’ i patentoobladatel’ AO «NPP «Salyut» № 2019145485; zayavl. 27.12.2019. opubl. 30.07.2020; byul. № 22. (in Russian)
  21. Matkhanov P.N. Osnovy analiza elektricheskikh tsepey. Lineynye tsepi: uchebnik dlya vuzov. M.: Vysshaya shkola. 1981. 333 s. (in Russian)
  22. Razevig V.D., Potapov Yu.V., Kurushin A.A. Proektirovanie SVCh ustroystv s pomoshch’yu Microwave Office. Pod red. Razeviga V.D. M.: Solon-Press. 2003. 496 s. (in Russian)
  23. Baranov A.V. Proektirovanie SVCh-usiliteley bol’shoy moshchnosti v klasse «E». Radiotekhnika. 2006. № 12. S. 65−70. (in Russian)
Date of receipt: 27.04.2021 г.
Approved after review: 25.05.2021 г.
Accepted for publication: 18.06.2021 г.