Journal Electromagnetic Waves and Electronic Systems №2 for 2021 г.
Article in number:
Modelling and optimization of the linear tapered slot antenna
Type of article: scientific article
DOI: https://doi.org/10.18127/j15604128-202102-06
UDC: 621.396.67
Authors:

Yu.S. Blinova, V.E. Drach, A.A. Litvinenko, A.V. Rodionov

 Kaluga branch of the Bauman MSTU (Kaluga, Russia)

Abstract:

A key component of any phased array or radar sensor is its antenna. For ultra wide band systems usually four types of antenna are being used: microstrip, tapered slot, sinuous and Yagi-Uda. The microstrip antenna generates two main lobes, which makes it a bidirectional antenna, like the tapered slot, sinuous, or Yagi-Uda antennae. Several efforts had been made to shift the bidirectional character of the microstrip antenna into unidirectional by placing a ground plate to absorb the undesirable main lobe. These efforts successfully eliminated the undesirable main lobe; however, side effects were introduced along the way, such as the remaining main lobe’s direction became frequency dependent. On the other hand, the sinuous antenna design is very complex when compared with the tapered slot antenna, involving multiple curvatures and angles. The Yagi–Uda antenna design, although less complex than the sinuous, still requires multiple segments and is more complicated than the tapered slot antenna.

This study examined and analyzed primary parameters regarding their individual impact on linear tapered slot antenna design. The result is a set of recommendations for linear tapered slot antenna design to operate within the UWB frequency range. Unlike previous studies, which only focused on a certain set of these parameters, this paper provides a comprehensive recommendation for the parameters, which should result in a functional tapered slot antenna design. This set of recommendation can also serve as a base for further optimization, if desired. When used for optimization, the results from this study can guide the direction of changes when multiple parameters need to be adjusted simultaneously. Furthermore, this set of recommendations can be applied to other tapered slot antenna designs, as they all share, although are not defined completely, by these investigated parameters.

Pages: 49-63
For citation

Blinova Yu.S., Drach V.E., Litvinenko A.A., Rodionov A.V. Modelling and optimization of the linear tapered slot antenna. Electromagnetic waves and electronic systems. 2021. V. 26. № 2. P. 49−63. DOI: https://doi.org/10.18127/j15604128-202102-06 (in Russian)

References
  1. Belousov O.A., Kurnosov R.Yu., Gorshkov P.A., Ryazanova A.G. Antennaya reshetka na osnove shirokopolosnoy planarno-shchelevoy antenny s eksponentsial’nym izmeneniem shiriny shcheli dlya sistem besprovodnogo shirokopolosnogo dostupa: stat’ya. Voprosy sovremennoy nauki i praktiki. 2015. № 2(56). S. 184−194. (in Russian)
  2. Drach V.E., Rodionov A.V., Chukhraev I.V., Kuznetsova D.A. Primenenie izluchatelya Vival’di v passivnoy radiolokatsii: stat’ya. Elektromagnitnye volny i elektronnye sistemy. 2015. T. 20. № 7. S. 9−13. (in Russian)
  3. Wan K., Xie C., Zheng Y., Yin J., Yang J. A Multilayer-stacked UWB Yagi Antenna. In Proc. of the 2017 International Symposium on Antennas and Propagation (ISAP), Phuket, Thailand. 30 October − 2 November 2017. P. 1−2.
  4. Meena M.L., Kumar M., Parmar G., Meena R.S. Design Analysis and Modeling of Directional UWB Antenna with Elliptical Slotted Ground Structure for Applications in C- & X-Bands. Progress in Electromagnetics Research. 2016. V. 63. P. 193−207.
  5. Yngvesson K.S., Schaubert D.H., Korzeniowski T.L., Kollberg E.L., Thungren T., Lohansson J.F. Endfire Tapered Slot Antennas on Dielectric Substrates. IEEE Transactions on Antennas and Propagation. 1985. V. 33. P. 1392−1400.
  6. Liang J., Chiau C.C., Chen X., Parini C.G. Study of a printed circular disc monopole antenna for UWB systems. IEEE Transactions on Antennas and Propagation. 2005. V. 53. P. 3500−3504.
  7. Yngvesson K.S., Korzeniowski T.L., Kim Y.-S. The tapered slot antenna-a new integrated element for millimeter-wave applications. IEEE Transactions on Microwave Theory and Techniques. 1989. V. 37. P. 365−374.
  8. Balanis C.A. Antenna Theory Analysis and Design (4th ed.). Wiley: USA. 2016. 496 p.
  9. Pantenkov D.G., Gusakov N.V. Komp’yuternoe modelirovanie aktivnoy fazirovannoy antennoy reshetki: stat’ya. Kosmicheskaya tekhnika i tekhnologii. 2013. № 1. S. 32−37. (in Russian)
  10. Il’ichev V.Yu., Yurik E.A. Analiz massivov dannykh s ispol’zovaniem biblioteki Pandas dlya Python: stat’ya. Nauchnoe obozrenie. Tekhnicheskie nauki. 2020. № 4. S. 41−45. (in Russian)
  11. Drach V.E., Rodionov A.V., Chukhraev I.V., Kuznetsova D.A. Modelirovanie antennoy reshetki na shirokopolosnykh izluchatelyakh: stat’ya. Elektromagnitnye volny i elektronnye sistemy. 2015. T. 21. № 1. S. 74−77. (in Russian)
  12. Drach V.E., Luganskaya A.I. Modelirovanie vliyaniya pregrady na kharakteristiki rupornoy antenny: stat’ya. Vestnik Ryazanskogo gosudarstvennogo radiotekhnicheskogo universiteta. 2018. № 65. S. 19−25. (in Russian)
  13. Janaswamy R., Schaubert D.H. Characteristic Impedance of a Wide Slotline on Low-Permittivity Substrates. IEEE Transactions on Microwave Theory and Techniques. 1986. V. 34. P. 899−902.
Date of receipt: 19.01.2021 г.
Approved after review: 17.02.2021 г.
Accepted for publication: 23.03.2021 г.