350 rub
Journal Electromagnetic Waves and Electronic Systems №1 for 2021 г.
Article in number:
Three-dimensional modeling of processes in a traveling-wave tube terahertz range
DOI: https://doi.org/10.18127/j15604128-202101-05
UDC: 621.385.6
Authors:

Ch.Z. Nguyen¹, S.A. Alikov²,  A.G. Shein³, D.G. Kovtun4, E.M. Ilyin5

1-4 Volgograd State Technical University (Volgograd, Russia)

5 Moscow State Technical University. N.E. Bauman (Moscow, Russia)

Abstract:

Mastering the terahertz range promises many opportunities for practical application, in this regard, the problem of optimizing existing and creating new amplifiers and generators operating in this frequency range does not lose its relevance. One of the possible approaches for solving the problem under consideration is provided by electrovacuum electronics, where a traveling wave lamp can be especially noted due to the combination of its characteristics in terms of power and bandwidth. Goal. Creation of a threedimensional model of the device, based on the finite difference time domain (FDTD) method for Maxwell's equations and the cloudin-cell (CIC) method, followed by a series of numerical experiments to study the characteristics of the device with the given electron flow parameters and space configuration interactions. Results. The results of modeling a traveling-wave tube of the O-type in the terahertz range are presented using the example of an amplifier with a retarding structure of the double comb type with a strip electron flow. It is shown that the presented algorithm can be used to simulate processes in a slow-wave structure of a complex type with an input and output waveguide and absorber inserts. The power gain is estimated for a system with an absorber of various lengths, and the absorber length is optimized. Practical significance. The field of application of the proposed model is the study of processes in electrovacuum devices with the aim of both modernizing existing microwave amplifiers and generators in the terahertz range, and developing new devices.

Pages: 45-54
For citation

Nguyen Ch.Z., Alikov S.A., Shein  A.G., Kovtun D.G., Ilyin E.M. Three-dimensional modeling of processes in a traveling-wave tube terahertz range. Electromagnetic waves and electronic systems. 2021. V. 26. № 1. P. 45−54. DOI: https://doi.org/10.18127/j15604128-202101-05. (in Russian)

References
  1. Siegel P. THz technology in biology and medicine. IEEE Trans. Microwave Theory Tech. 2004. V. 52. № 10. P. 2438−2447.
  2. Linfield E. Terahertz applications: a source of fresh hope. Nat. Photonics. 2007. V. 1. P. 257−258.
  3. Federici J. Review of terahertz and subterahertz wireless communications. J. Appl. Phys. 2010. V. 107. № 11.111101.
  4. Fan Sh., He Y., Ung B.S., et all. The growth of biomedical terahertz research. J. Phys. D: Appl. Phys. 2014. V. 47. № 37.374009.
  5. Siegel P. Terahertz technology. IEEE Trans. 2002. V. MTT-47. № 3. P. 910.
  6. Booske J.H., Dobbs R.J., Joye C.D., et all. Vacuum electronic high-power terahertz sources. IEEE Trans. Terahertz Sci. Technol. 2011. V. 1. № 1. P. 54−75.
  7. Shin Y.-M., Barnett L.R., Luhmann N.C. Phase-shifted traveling-wave-tube circuit for ultrawideband high-power submillimeter-wave generation. IEEE Trans. Electron Devices. 2009. V. 56. № 5. P. 706−712.
  8. Shin Y.-M., Baig A., Barnett L.R., et all. Modeling Investigation of an Ultrawideband Terahertz Sheet Beam Traveling-Wave Tube Amplifier Circuit. Terahertz Science and Technology. ISSN 0018-9383. September 2011. V. 58. № 9. P. 3213−3218.
  9. Baig A., Shin Y.-M., Barnett L.R., et all. Fabrication and RF Testing of Near-THz Sheet Beam TWTA. Terahertz Science and Technology. ISSN 1941-7411. December 2011. V. 4. № 4. P. 181−207.
  10. Baig A., Shin Y.-M., Barnett L.R., et all. System design analysis of a 0.22-THz sheet-beam traveling-wave tube amplifier. IEEE Trans. Electron Devices. 2012. V. 59. № 1. P. 234−240.
  11. Karetnikova T.A., Rozhnev A.G., Ryskin N.M. i dr. Modelirovanie lampy begushchei volny subteragertsevogo diapazona s zamedlyayushchei sistemoi tipa sdvoennoi grebenki i lentochnym elektronnym puchkom. Radiotekhnika i elektronika. 2016. T. 61. № 1. S. 54−60. (in Russian)
  12. Karetnikova T.A., Rozhnev A.G., Ryskin N.M. i dr. Issledovanie kharakteristik zamedlyayushchei sistemy lampy begushchei volny millimetrovogo diapazona s lentochnym elektronnym puchkom. Izvestiya vuzov. Radiofizika. 013. T. LVI. № 8–9. S. 601−613. (in Russian)
  13. Grigorev Yu.N., Vshivkov V.A., Fedoruk M.P. Chislennoe modelirovanie metodami chastits-v-yacheikakh. Novosibirsk: SO RAN. 2004.
  14. Inan U.S., Marshall R.A. Numerical Electromagnetics The FDTD Method. Cambridge University Press. 2011. 390 p. (in Russian)
  15. Umeda T., Omura Y., Tominaga T., et all. A new charge conservation method in electromagnetic particle-in-cell simulations. Computer Physics Communications. 2003. № 156. P. 73−85.
  16. Potter D. Computational Physics. N.Y.: Wiley. 1973.
  17. Karetnikova T.A., Rozhnev A.G., Ryskin N.M. i dr. Modelirovanie vzaimodeistviya elektronnogo potoka s elektromagnitnym polem v LBV-usilitele subteragertsovogo diapazona s zamedlyayushchei sistemoi tipa sdvoennaya grebenka. Sb. statei IV Vseros. konf.  «Elektronika i mikroelektronika SVCh». SPb.: Izd-vo SPbGETU «LETI». T. 1. S. 115−119. (in Russian)
Date of receipt: 02.12.2020 г.
Approved after review: 22.12.2020 г.
Accepted for publication: 13.01.2021 г.