V.S. Chudnovsky, L.S. Chudnovsky, Yu.P. Vagin, A.N. Pleshanov, K.E. Tyupikov
JSC «NPK «SPP» (Moscow, Russian)
Registration of the coordinates of lightning by their optical radiation has already been implemented on geostationary spacecraft in the wavelength range of 777.4 nm. However, the algorithms for processing the registered signals, as well as the volumes of information flows, have not yet been sufficiently studied.
The choice of the sensor for the global registration of optical radiation of lightning on board a low-orbit spacecraft is substantiated. The prospects of using photodiodes in the difference-ranging method for determining coordinates are shown.The characteristics of lightning detection using matrices and LEDs have been studied. The prospects of using photodiodes in the differential-range-finding method for determining coordinates are shown.
It is shown that the registration of optical lightning radiation on board the spacecraft by photodiodes provides the characteristics of detection and false alarms of a higher quality compared with the use of CCD matrices.
Chudnovsky V.S., Chudnovsky L.S., Vagin Yu.P., Pleshanov A.N., Tyupikov K.E. Global registration by optical radiation of lightning discharges on aboard a low-orbit spacecraft. Electromagnetic waves and electronic systems. 2021. V. 26. № 1. P. 5−12. DOI: https://doi.org/10.18127/j15604128-202101-01. (in Russian)
- Ullrich Finke Lightning observations from space: Time and space characteristics of optical events. FH Hannover 5th December 2007. 3 rd MTG Workshop EU METSAT
- Ageev V.M., Pleshanov A.N., Polyakov V.T., Tyupikov K.E., Chudnovskii A.L., Chudnovskii L.S. Nizkorbitalnyi kosmicheskii registrator molnievykh razryadov. Elektromagnitnye volny i elektronnye sistemy. 2018. T. 23. № 2. S. 64−66. (in Russian)
- Chudnovskii V.S., Chudnovskii L.S., Ageev V.M., Busygin V.P., Vagin Yu.P., Groznov I.V., Groznov A.V., Karkhov A.N., Kolodochkin E.S., Mozgov K.S., Panov S.A., Puzanov Yu.V., Stal N.L. Registratsiya izluchenii molnievykh razryadov v raznostno-dalnomernykh sistemakh kosmicheskogo monitoringa. Elektromagnitnye volny i elektronnye sistemy. 2011. № 3. T. 16. S. 51−57. (in Russian)
- Kirkland M.W. An examination of superbolt – class lightning observed by the FORTER satellite Space. Atmoshpelric Sciences Group Los Alamos National Laboratory. New Mexico. 1999 (LA-UR-99-1685).
- Barasch G.T. Spectral intensities emitted by lightning discharges. J. Geoph. Res. 1970. V. 75. H. 1049−1057.
- Busygin V.P., Krasnokutskaya L.D., Kuzmina I.Yu. Perenos opticheskogo izlucheniya podoblachnykh molnii v kosmos. Izvestiya RAN. Fizika atmosfery i okeana. 2019. T. 33. № 5. S. 85−93. (in Russian)
- Sean Davis, Suszcynsky D., Heavener M., Jacobson A., T.Light FORTE Observation of Simultaneous VHF and Optical Emission from Lightning: Optical Source Properties and Discrimination Capability. Los Alamos National Lab. Space and Atmospheric Sciences Group. NS D466. Los Alamos. NM 87545.
- Finke U., Hauf T. Feasibility of lightning location from f Geostationary Orbit. TUM/CO/02.1016/SAN Institut fur Meteorologie and Klimatoljgie Universitat Hannover 2002.
- Chudnovsky A. The Gauge of Optical Pulse Radiation with an Additive Background Flare. AIS-2008 «ATMOSPHERE, IONOSPHERE, SAFETY». Kaliningrad. July 7−12. 2008. P. 205−206. ISBN 8978-5-88874-871-8.
- Chudnovskii L.S., Ageev V.M. Metod opredeleniya vremeni prikhoda apriorno neizvestnykh signalov s maloi bazoi. Vestnik RAEN. 2016. № 1. S. 38−40. (in Russian)
- Chudnovskiy L. Trace Distortion Correction. AIS-2014 «ATMOSPHERE, IONOSPHERE, SAFETY». Kaliningrad. 2014. ISBN 978-5-9971-0313-2. P. 203−210.
- Tikhonov V.N., Goryainov A.V. Primery i zadachi po staticheskoi radiotekhnike. M.: 1973. (in Russian)