350 rub
Journal Electromagnetic Waves and Electronic Systems №5 for 2020 г.
Article in number:
Method for resolving individual scattering elements aerial objects in radar stations
DOI: 10.18127/j15604128-202005-07
UDC: 621.396.969.181.4
Authors:

I.N. Kostomarov – Ph.D.(Eng.), Lecturer, igorkostomarov@yandex.ru
A.A. Chizhov – Dr.Sc.(Eng.), Associate Professor, Deputy Head, rtshouse@mail.ru​​​​​​​
D.V. Panov – Ph.D.(Eng.), Associate Professor, Professor of Department, pdvlist@list.ru​​​​​​​​​​​​​​
A.V. Ashikhmin – Post-graduate Student, ashi_hmin@mail.ru​​​​​​​
S.M. Vyaznikov – Post-graduate Student, nibingiliat@mail.ru​​​​​​​
A.S. Lebedev – Ph.D.(Eng.), Senior Lecturer, leas97@rambler.ru

Abstract:

Currently, the task of estimating the number of individual scattering elements of air objects and their informative parameters is relevant for radar station developers. Radar portraits obtained based on the resolution of individual scattering elements of air objects can be used to recognize air objects based on such characteristics as the number of resolved individual scattering elements, the distance between individual scattering elements, and their effective scattering area. The article offers a method for resolving individual scattering elements of air objects in radar stations using limited-broadband signals. The type and parameters of modulation of the probing limited-broadband signal for radar stations that provide minimum requirements for the signal-to-noise ratio when resolving individual scattering elements of air objects under time and frequency restrictions are justified. As such a signal is proposed to use a quasi-continuous multi-periodic multifrequency signal with a pseudorandom time-frequency modulation, the function of the error which is close to «push button» form that allows a wide range to provide an unambiguous measurement of time delay and frequency Doppler echo signals, and to eliminate the effects of blind ranges and blind speeds. The proposed method for resolving individual scattering elements of air objects in radar stations is based on the application of the projection method for solving the inverse scattering problem to the results of correlation processing of multi-frequency multi-period signals. Estimates of the potential effectiveness of the proposed method for resolving individual scattering elements of air objects in radar stations are presented. The results obtained can be used to recognize aerial objects based on their radar portraits, which are evaluated based on the resolution of scattering elements.

Pages: 67-78
For citation

Kostomarov I.N.,Chizhov A.A., Panov D.V., Ashikhmin A.V., Vyaznikov S.M., Lebedev A.S. Method for resolving individual scattering elements aerial objects in radar stations. Electromagnetic waves and electronic systems. 2020. V. 25. № 5. P. 67−78. DOI: 10.18127/j15604128-202005-07. (in Russian)

References
  1. Abramenkov V.V., Klimov S.A., Bondarev L.A., Yudin V.A., Gulshin V.A. Razreshenie i raspoznavanie radiolokatsionnykh ob’ektov. Ulyanovsk: FGBOU VPO «Ulyanovskii gosudarstvennyi tekhnicheskii universitet». 2012. 195 s. (in Russian)
  2. Mitrofanov D.G., Prokhorkin A.G. Metody kompensatsii vliyaniya sostavlyayushchikh turbinnogo effekta pri postroenii izobrazhenii vozdushnykh tselei. Radiotekhnika. 2006. № 9. S. 32−37. (in Russian)
  3. Sokolov A.V., Lzutkin B.A. i dr. Ob’ekty radiolokatsii. Obnaruzhenie i raspoznavanie. Kollektivnaya monografiya. Pod red. A.V. Sokolova. M.: Radiotekhnika. 2006. 176 s. (in Russian)
  4. Berdyshev V.P., Pomazuev O.N., Savelev A.N., Smolkin M.A., Kopylov V.A., Loi V.V. Raspoznavanie klassov i tipov vozdushnykh ob’ektov po dvumernym radiolokatsionnym izobrazheniyam v obzornoi RLS. Zhurnal Sibirskogo federalnogo universiteta. Ser. Tekhnika i tekhnologii. 2019. T. 12. № 1. S. 18−29. (in Russian)
  5. Mitrofanov D.G., Grigoryan D.S., Gerasimov V.V., Romanenko A.V. Primenenie sverkhrazresheniya pri identifikatsii letatelnykh apparatov po doplerovskim portretam. Elektromagnitnye volny i elektronnye sistemy. 2017. T. 22. № 4. S. 82−88. (in Russian)
  6. Mitrofanov D.G. Bortovik V.V. Algoritmy sovershenstvovaniya metoda postroeniya dvumernykh radiolokatsionnykh izobrazhenii. Metody i ustroistva peredachi i obrabotki informatsii. 2004. № 2. S. 168−181. (in Russian)
  7. Berdyshev V.P., Mironov A.M., Pomazuev O.N., Savelev A.N., Kopylov V.A., Loi V.V. Imitatsionnaya matematicheskaya model postroeniya dvumernykh radiolokatsionnykh izobrazhenii vozdushnykh ob’ektov v interesakh otsenki kachestva raspoznavaniya. Zhurnal Sibirskogo federalnogo universiteta. Ser. Tekhnika i tekhnologii. 2018. T. 11. № 7. S. 764−774. (in Russian)
  8. Vudvord F.M. Teoriya veroyatnostei i teoriya informatsii s primeneniyami v radiolokatsii. M.: Sovetskoe radio. 1955. 128 s. (in Russian)
  9. Kanashchenkov A.I., Merkulov V.I., Gerasimov A.A. i dr. Radiolokatsionnye sistemy mnogofunktsionalnykh samoletov. T. 1. RLS – informatsionnaya osnova boevykh deistvii mnogofunktsionalnykh samoletov. Sistemy i algoritmy pervichnoi obrabotki radiolokatsionnykh signalov. M.: Radiotekhnika. 2006. 656 s. (in Russian)
  10. Chizhov A.A. Metod razresheniya gruppovykh sosredotochennykh tselei. Radiotekhnika. 2009. № 10. S. 4−12. (in Russian)
     
  11. Chizhov A.A. Sverkhrazreshenie i integralnoe uravnenie Fredgolma pervogo roda. M.: Si-press. 2015. 200 s. (in Russian)
  12. Panov D.V., Chizhov A.A., Abramenkov V.V., Klimov S.A., Pechenev E.A. Sravnitelnaya otsenka effektivnosti ispolzovaniya metodov resheniya obratnoi zadachi rasseyaniya v interesakh razresheniya otdelnykh ob’ektov iz sostava gruppovogo sosredotochennogo. Radiolokatsionnye i radionavigatsionnye sistemy. 2014. № 1. S. 5−16. (in Russian)
  13. Kostomarov I.N. Ustroistvo korrelyatsionnoi obrabotki mnogochastotnykh mnogoperiodnykh signalov s dlitelnym kogerentnym nakopleniem. Izvestiya Rossiiskoi akademii raketnykh i artilleriiskikh nauk (nauchno-tekhnich. zhurnal). SPb.: ZAO «NPO spetsialnykh materialov». 2013. № 2 (76). S. 130−133. (in Russian)
Date of receipt: 12.08.2020 г.