Sergey A. Klimov, Dr.Sc.(Eng.), Associate Professor; zuk_house@rambler.ru
Sergey M. Semchenkov, Ph.D.(Eng.), Dr.Sc. Candidate;ssm010283@gmail.com
A. Vitalievich Ashikhmin, Post-graduate Student; ashi_hmin@mail.ru
Alexey N. Kovalenkov, Post-graduate Student; a.kovalenkov@list.ru
Sergey S. Rachkovsky, Research Scientist ; 59rss@rambler
In radar, the acoustic method of large-scale physical modeling has long been known and adequately proven itself. The advantages of the acoustic BEC lie not only in its lower cost compared to radio frequency, but also in its wider functionality. The transition from the radio frequency range of wavelengths to the acoustic range should be carried out on the basis of the similarity method, which includes three theorems. In physical modeling of real radars in the acoustic range, it is necessary to solve the following problems: modeling of the medium of propagation of oscillations; modeling of parameters of sounding signals; modeling the parameters of radar antenna systems; modeling of scattering properties and target movement. To accurately determine the distance by the pulsed method using an ultrasonic locator, it is necessary to know the speed of sound, which depends on the characteristics of the propagation of acoustic waves in an elastic medium. When choosing a wavelength for an acoustic BEC, the decisive factor is the availability of inexpensive, but highly sensitive ultrasonic acoustic sensors that can function in the air when receiving echo signals from an active locator. A frequency of 41 kHz for carrying out large-scale physical modeling in acoustic BEC adequately describes the real processes occurring during the secondary reflection of radio waves. To ensure the condition of the far zone, it is possible to apply special processing methods. Ultrasonic modeling is highly effective in the development of new radars and has a number of advantages over other research methods.
Klimov S.A., Semchenkov S.M., Ashikhmin A.V., Kovalenkov A.N., Rachkovsky S.S. Features of modeling radar measurements in an echole acoustic camera. Electromagnetic waves and electronic systems. 2020. V. 251. № 5. P. 7−18. DOI: 10.18127/j15604128-202005-02. (in Russian)
- Shirman Ya.D., Leshchenko S.P., Orlenko V.M. O modelirovanii vtorichnogo izlucheniya vozdushnykh tselei i ego ispolzovanii v tekhnike radiolokatsionnogo raspoznavaniya. Vestnik MGTU. Ser. Priborostroenie. 1998. № 4. S. 14−24, 124. (in Russian)
- Shtager E.A. Rasseyanie radiovoln na telakh slozhnoi formy. M.: Radio i svyaz. 1986. 184 s. (in Russian)
- Spravochnik konstruktora REA: Obshchie printsipy konstruirovaniya. Pod red. R.G. Varlamova. M.: Sovetskoe radio. 1980. 480 s. (in Russian)
- Venikov V.A. Teoriya podobiya i modelirovaniya primenitelno k zadacham elektroenergetiki. M.: Vysshaya shkola. 1966. 278 s. (in Russian)
- Ultrazvuk. Malenkaya entsiklopediya. Pod red. I.P. Golyamina. M.: Sovetskoe radio. 1979. 400 s. (in Russian)
- Babichev A.P., Babushkina N.A., Bratkovskii A.M. i dr. Fizicheskie velichiny: Spravochnik. Pod red. I.S. Grigoreva, E.Z. Meilikhova. M.: Energoatomizdat. 1991. 1232 s. (in Russian)
- Semin A.I., Trofimov V.N. Masshtabnoe fizicheskoe gidroakusticheskoe modelirovanie radiolokatsionnykh sistem polucheniya i obrabotki radiolokatsionnykh izobrazhenii vysokogo razresheniya. Izvestiya RAN. Teoriya i sistemy upravleniya. 2005. № 3. S. 75−78. (in Russian)