350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2020 г.
Article in number:
Interaction of electromagnetic radiation of the optical and microwave ranges with organic films of isatins
DOI: 10.18127/j15604128-202003-04
UDC: 537.531, 621.371, 539.234
Authors:

A.S. Mazinov – Ph.D.(Eng.), Associate Professor, 
Department of Radiophysics and Radioelectronics, V.I. Vernadsky Crimean Federal University (Simferopol) E-mail: mazinovas@cfuv.ru

Abstract:

Formulation of the problem. Of particular interest are the current advances in optoelectronics due to the high re-emissivity of organic materials. The main directions of development of modern radio electronics are related to the development of organic field effect transistors (OFET), narrow-band organic light emitting diodes (OLED) and the latest photovoltaic devices, in particular DSSC (dyesensitized solar cell). The use of organic materials, which make it possible to expand the frequency range using cheaper methods of precipitation from solutions, is an urgent task.
The purpose of the work is to study changes in the spectral of electromagnetic radiation in the optical (near IR, visible and near UV) and high-frequency ranges when interacting with thin organic films. Consider the spectral characteristics of electrodynamic parameters in the frequency segments 352−1200 THz, 19.48−119.92 THz and 17.5−26 GHz in artificially synthesized interaction media based on film structures deposited by irrigation from isatin-β-anil solutions, phenylhydrazone isatin, phenylhydrazone 5-bromisatin, phenylhydrazone 5-fluoroisatin, on dielectric substrates.
Practical significance. A complication of the molecular structure of the initial isatin led to a general smoothing of the luminescence spectra, and, when doped with Br and F atoms, to mixing and changing the amplitudes of two characteristic reradiation peaks at frequencies of 617−631 THz (475−485 nm) and 500−577 THz (520−600 nm). At the same time, the spectra in the optic range, upon modernization of the molecular organic structure, showed the presence of two absorption maxima in the frequency range 250−350 nm (856−1199 THz) and 350−450 nm (667−856 THz).
In the microwave range, the coefficient of transmission of an electromagnetic wave through organic structures is higher than that of a clean glass cover substrate. The transmission maxima of organic materials vary with frequency. IβA has a minimum insertion attenuation at a frequency of 19.5 GHz with an indicator of 97% transmittance from the incident power, which is the best indicator among the studied materials, but already at a frequency of 24 GHz this indicator drops to 90.5%. The maximum attenuation of the incident wave is exerted by PHBI with a transmission coefficient of 89% at a frequency of 23.4 GHz. The reflection coefficient of isatins is small, however, in all isatin derivatives, an increase in the reflection coefficient from frequency was found, at a general level greater than that of the substrate.

Pages: 29-36
For citation

Mazinov A.S. Interaction of electromagnetic radiation of the optical and microwave ranges with organic films of isatins. Electromagnetic waves and electronic systems. 2020. V. 25. № 3. P. 29−36. DOI: 10.18127/j15604128-202003-04. (in Russian)

References
  1. Tang C.W., VanSlyke S.A. Organic electroluminescent diodes. Applied Physics Letters. 1987. V. 51. № 12. P. 913−915. DOI: 10.1063/1.98799.
  2. Guan H.-M., Hu Y.-X., Xiao G.-Y., He W.-Z., Chi H.-J., Lv Y.-L. Novel adamantane-bridged phenanthroimidazole molecule for highly efficient full-color organic light-emitting diodes. Dyes and Pigments. 2020. V. 177. P. 108273. DOI: 10.1016/j.dyepig.2020.108273.
  3. Sasabe H., Kido J. Development of high performance OLEDs for general lighting. Journal of Materials Chemistry C. 2013. V. 1. № 9. P. 1699−1707. DOI: 10.1039/c2tc00584k.
  4. Qian L., Steven E.B., Prashant S. Developments of  Diketopyrrolopyrrole Dye Based Organic Semiconductors for a Wide Range of ‐ Applications in Electronics. Advanced Materials. 2020. V. 32. № 4. P. 1903882. DOI: 10.1002/adma.201903882.
  5. Gusev A.N., Mazinov A.S., Shevchenko A.I., Tyutyunik A.S., Gurchenko V.S., Braga E.V. Volt-ampernye kharakteristiki i fotoelektricheskii effekt geterostruktur fulleren S60-4-metilfenilgidrazon N-izoamilizatina. Pisma v zhurnal tekhnicheskoi fiziki. 2019. T. 45. № 19. S. 40−43. DOI: 10.21883/PJTF.2019.19.48317.17884. (in Russian)
  6. Yi Z., Wang S., Liu Y. Design of High Mobility Diketopyrrolopyrrole Based ‐ ‐ π‐Conjugated Copolymers for Organic Thin Film Tra‐ nsistors. Advanced Materials. 2015. V. 27. № 24. P. 3589−3606. DOI: 10.1002/adma.201500401.
  7. Meng L., Zhang Y., Wan X., Li C., Zhang X., Wang Y. Organic and solution-processed tandem solar cells with 17.3% efficiency. Science. 2018. V. 361. № 6407. P. 1094−1098. DOI: 10.1126/science.aat2612.
     
  8. Gusev A.N., Mazinov A.S., Shevchenko A.I., Tyutyunik A.S., Gurchenko V.S., Braga E.V. Issledovanie geteroperekhodov na osnove sistemy fullerena i gidrazona. Zhurnal prikladnoi fiziki. 2019. T. 48. № 6. S. 48−53. (in Russian)
  9. Milan R., Singh Selopal G., Cavazzini M., Orlandi S., Boaretto R., Caramori S. Zinc phthalocyanines as light harvesters for SnO2-based solar cells: a case study. Scientific Reports. 2020. V. 10. № 1. DOI: 10.1038/s41598-020-58310-1.
  10. Urnikaite S., Daskeviciene M., Send R., Wonneberger H., Sackus A., Bruder I., Getautis V. Organic dyes containing a hydrazone moiety as auxiliary donor for solid-state DSSC applications. Dyes and Pigments. 2015. V. 114. P. 175−183. DOI: 10.1016/j.dyepig.2014.11.012.
     
  11. Urnikaite S., Malinauskas T., Bruder I., Send R., Gaidelis V., Sens R., Getautis V. Organic Dyes with Hydrazone Moieties: A Study of Correlation between Structure and Performance in the Solid-State Dye-Sensitized Solar Cells. Journal of Physical Chemistry C. 2014. V. 118. № 15. P. 7832−7843. DOI: 10.1021/jp500527d.
  12. Van De Burgt Y., Melianas A., Keene S.T., Malliaras G., Salleo A. Organic electronics for neuromorphic computing. Nature Electronics. 2018. V. 1. № 7. P. 386−397. DOI: 10.1038/s41928-018-0103-3.
  13. Chang J.S., Facchetti A.F., Reuss R. A Circuits and Systems Perspective of Organic/Printed Electronics: Review, Challenges, and Contemporary and Emerging Design Approaches. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2017. V. 7. № 1. P. 7−26. DOI: 10.1109/jetcas.2017.2673863.
  14. Yuan Y., Giri G., Ayzner A.L., Zoombelt A.P., Mannsfeld S.C.B., Chen J. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature Communications. 2014. V. 5. № 1. P. 3005. DOI: 10.1038/ncomms4005.
  15. Girotto C., Moia D., Rand B.P., Heremans P. High-Performance Organic Solar Cells with Spray-Coated Hole-Transport and Active Layers. Advanced Functional Materials. 2010. V. 21. № 1. P. 64−72. DOI: 10.1002/adfm.201001562.
  16. Gusev A.N., Mazinov A.S., Tyutyunik A.S., Gurchenko V.S. Spektralnye i provodyashchie svoistva plenochnykh geterostruktur na osnove fullerensoderzhashchego materiala i 4-metilfenilgidrazon N-izoamilizatina. RENSIT. 2019. T. 11. № 3. S. 331−336. DOI: 10.17725/rensit.2019.11.331. (in Russian)
  17. Gusev A.N., Shulgin V.F., Topilova Z.M., Meshkova S.B. ChemInform Abstract: Synthesis, Structure, and Photoluminescence of 5-Phenyl-2-pyridyl-5,6-dihydro[1,2,4]triazolo[1,5-c]quinazolines. Russian Chemical Bulletin. 2012. V. 61. № 1. P. 95−98. DOI:10.1007/s11172-012-0014-9.
  18. Mazinov A.S., Gurchenko V.S., Tyutyunik A.S., Shevchenko A.I. Vliyanie strukturnykh osobennostei fullerensoderzhashchego materiala na ego rezistivnye svoistva pri osazhdenii iz rastvora. Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva. 2018. T. 15. № 4. S. 85−92. DOI: 10.31429/vestnik-15-4-85-92. (in Russian)
  19. Saini P., Aror M. Microwave Absorption and EMI Shielding Behavior of Nanocomposites Based on Intrinsically Conducting Polymers, Graphene and Carbon Nanotubes. New Polymers for Special Applications. 2012. P. 71−112. DOI: 10.5772/48779.
  20. Qin F., Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. Journal of Applied Physics. 2012. V. 111. № 6. P. 061301. DOI: 10.1063/1.3688435.
Date of receipt: 29 марта 2020 г.