350 rub
Journal Electromagnetic Waves and Electronic Systems №3 for 2020 г.
Article in number:
Structure and emission properties of structures based on carbon walls and aluminum nitride
DOI: 10.18127/j15604128-202003-03
UDC: 537.9
Authors:

S.A. Bagdasaryan – Ph. D. (Eng.), General Director, Ltd company «RFID&KS Technology» E-mail: bagdassarian@mail.ru
S.A. Nalimov – Senior Research Scientist, 
Central Research Technological Institute «Technomash» (Moscow) Е-mail: san@cnititm.ru

Abstract:

To create field emission cathodes (autocathodes) used in the manufacture of displays and other devices, carbon nanowalls (CNW) are promising. The CNW layers are a porous material consisting of curved plates formed by graphene layers. The industrial use of CNW autocathodes is impeded by the heterogeneity and instability of the magnitude and density of the cathode current. To improve the characteristics of autocathodes, an AlN film is formed on the surface of the emitting substance, which also has the property of field emission.
CNW was obtained from a gas mixture of H2 and CH4 activated by a dc glow discharge. The CNW layers were deposited on silicon substrates and substrates representing a layered structure made by forming an opal matrix (OM) layer on a Si substrate. AlN films with controlled composition and structure were prepared by RF magnetron reactive sputtering. CNW layers with a thickness of > 4 μm were obtained by successive growth of two CNW layers (Si/CNW/CNW structure). An additional CNW layer was also grown on the surface of the first layer coated with Ni (Si/CNW/Ni/CNW structure). AlN films were grown on a CNW layer (Si/CNW/AlN and Si/OM/Ni/CNW/AlN structures). It is shown that CNW plates are formed from graphene layers partially connected by atomic bonds (up to 30 layers) packed in a hexagonal lattice, and AlN films consisted of amorphous and axially textured crystalline phases. The current-voltage characteristics of the autocathodes were measured in a pulsed mode at a pressure of ~10−3 Pa. The Si/CNW/CNW structures are characterized by a threshold of autoemission of ≤ 3.6 V/μm and a high density of centers of emission. The current-voltage characteristics of the layered structures Si/CNW/AlN, Si/OM/Ni/CNW and Si/OM/Ni/CNW /AlN showed better emission properties compared to the Si/CNW structure. The current-voltage characteristics considered make it possible to predict the structure and composition of the emitting layer to improve the operational characteristics of multilayer autocathodes.

Pages: 20-28
For citation

Bagdasaryan S.A., Nalimov S.A. Structure and emission properties of structures based on carbon walls and aluminum nitride. Electromagnetic waves and electronic systems. 2020. V. 25. № 3. P. 20−28. DOI: 10.18127/j15604128-202003-03 (in Russian).

References
  1. Cui L., Chen J., Yang B., Sun D. RF-PECVD synthesis of carbon nanowalls and their field emission properties. Applied Surface Science. 2015. V. 357. Part A. P. 1−7.
  2. Tzeng Y., Chen C-L., Chen Y-Y., Liu C-Y. Carbon nanowalls on graphite for cold cathode applications. Diamond and Related Materials. 2010. V. 19 (2−3). P. 201−204.
  3. Belyanin A.F., Borisov V.V., Bagdasaryan A.S. Nanostrukturirovannye uglerodnye materialy v emissionnoi elektronike. Rossiiskii tekhnologicheskii zhurnal. 2017. T. 5. № 3(17). S. 22−40.
  4. Wang H-X., Jiang N., Zhang H., Hiraki A. Growth of a three dimensional complex carbon nanoneedle electron emitter for fabrication of field emission devices. Carbon. 2010. V. 48. P. 4483−4488.
  5. Belyanin A.F., Borisov V.V., Samoilovich M.I., Bagdasaryan A.S. Vliyanie lazernogo oblucheniya i termicheskoi obrabotki na stroenie i avtoemissionnye svoistva uglerodnykh nanostenok. Poverkhnost. Rentgenovskie, sinkhrotronnye i neitronnye issledovaniya. 2017. № 3. S. 16−26.
  6. Belyanin A.F., Borisov V.V., Timofeev M.A., Lamskii A.N. Nenakalivaemye katody na osnove uglerodnykh nanostrukturirovannykh sloistykh struktur. Tekhnologiya i konstruirovanie v elektronnoi apparature. 2013. № 4. S. 31−36.
  7. Wang C.C., Chiu M.C., Shiao M.H., Shieua F.S. Characterization of AlN thin films prepared by unbalanced magnetron sputtering. Journal of The Electrochemical Society. 2004. V. 151 № 10. P. 252−256.
  8. Busta H.H., Chen J.M., Shen Z., Jansen K., Rizkowski S., Matey J., Lanzillotto A. Characterization of electron emitters for miniature xray sources. Journal of Vacuum Science & Technology B. 2003. V. 21. P. 344−349.
  9. Belyanin A.F., Samoilovich M.I., Pashchenko P.V., Borisov V.V. Dzbanovskii N.N., Timofeev M.A., Dvorkin V.V., Pilevskii A.A., Evlashin S.A. Poluchenie i stroenie poliklasternykh plenok almaza i almazopodobnykh uglerodnykh plenok. Nanoinzheneriya. 2013. № 7. S. 16−25.
  10. Samoilovich M.I., Belyanin A.F. Nanostrukturirovannye plenki AlN: poluchenie, stroenie i primenenie v elektronnoi tekhnike. Inzhenernaya fizika. 2006. № 5. S. 51−56.
  11. Belyanin A.F., Samoilovich M.I., Zhitkovskii V.D., Pashchenko P.V., Timofeev M.A., Kovalskii K.A., Kleshcheva S.M., Borisov V.V., Petukhov K.Yu. Sloistye nenakalivaemye katody. Nano- i mikrosistemnaya tekhnika. 2005. № 8. S. 39−48.
     
  12. Samoilovich M.I., Bovtun V., Rinkevich A.B., Belyanin A.F., Kleshcheva S.M., Kempa M., Nuzhnyi D. Prostranstvenno-neodnorodnye materialy na osnove reshetchatykh upakovok nanosfer SiO2. Inzhenernaya fizika. 2010. № 6. S. 29−38.
  13. Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. 3D-nanokompozitnye metallodielektricheskie materialy na osnove opalovykh matrits. Rossiiskii khimicheskii zhurnal. 2012. T. LVI. № 1−2. S. 26−35.
  14. Chen L., Liu H., Liu S., Li C., Wang Y., An K., Hua C., Liu J., Wei J., Hei L., Ly F. Growth of high quality AlN films on CVD diamond by RF reactive magnetron sputtering. Applied surface science. 2018. V. 431. P. 152−159.
  15. Ma D.L., Liu H.Y., Deng Q.Y., Huang N., Leng Y.X., Yang W.M., Silins K. Optimal target sputtering mode for aluminum nitride thin films deposition by high power pulsed magnetron sputtering. Vacuum. 2019. V. 160. P. 410−417.
  16. Tzeng Y., Chen W.L., Wu C., Lo J-Y., Li C-Y. The synthesis of graphene nanowalls on a diamond film on a silicon substrate by directcurrent plasma chemical vapor deposition. Carbon. 2013. V. 53. P. 120−129.
  17. Pimenta M.A., Dresselhaus G., Dresselhaus M.S., Cancado L.G., Jorio A., Saito R. Studying disorder in graphite-based systems by Raman spectroscopy. Physical chemistry chemical physics. 2007. V. 9. P. 1276−1291.
  18. Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nanodiabatic effects. Solid state communications. 2007. V. 143. P. 47−57.
  19. Thornton J.Di-M. Carbon Nanowalls: Processing, Structure and Electrochemical Properties. Dissertation submitted to the Graduate Faculty of North Carolina State University. 2011. P. 55.
  20. Shang N.G., Staedler T., Jiang X. Radial textured carbon nano flake spherules. Applied Physics Letters. 2006. 89. 103112. DOI: 10.1063/1.2346314.
  21. Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., Geim A.K. Raman spectrum of graphene and graphene layers. Physical review letters. 2006. V. 97. 187401.
  22. DOI: 10.1103/PhysRevLett.97.187401.

  23. Belyanin A.F., Bagdasaryan A.S. Sloistaya struktura na osnove plenok poliklasternogo almaza i AlN dlya ustroistv na poverkhnostnykh akusticheskikh volnakh. Uspekhi sovremennoi radioelektroniki. 2017. № 3. S. 30−38.
  24. Landau L.D., Lifshits E.M. Statisticheskaya fizika. M.: Nauka. 1964. 567 s.
  25. Oliveira C., Otani C., Maciel H.S., Massi M., Noda L.K., Temperini M.L.A. Raman active E2 modes in aluminum nitride films. Journal of Materials Science: Materials in Electronics. 2001. V. 12. P. 259−262.
  26. Liu L., Liu B., Edgara J.H., Rajasingam S., Kuball M. Raman characterization and stress analysis of AlN grown on SiC by sublimation. Journal of Applied Physics. 2002. V. 92. № 9. P. 5183−5188.
Date of receipt: 16 марта 2020 г.