I.P. Li – Ph.D. (Eng.), Head of the Technical Center of Pluton JSC (Moscow) E-mail: info@pluton.msk.ru
The solution of the problem of ensuring the reliability of the operation of vacuum microwave ovens (microwave) devices is described on the example of magnetrons with instant availability, created on the basis of non-cathode cathode assemblies, including secondaryemission and field-emission cathodes (electron sources) by applying technical and technological methods.
These methods are based on the results of fundamental studies of electron sources of vacuum microwave devices of their basic physicochemical properties, including a model of the structure of electron sources included in non-cathode cathode sites and the physical mechanism of electron emission from their surface as part of a working magnetron.
The experimental technique was based on the use of experimental samples of non-cathodic cathode assemblies obtained using palladium-barium (Pd-Ba) secondary emission cathodes and tantalum (Ta) electron-emitting electron emitters made of modern starting materials using new technological and diagnostic equipment. High resolution scanning electron microscopy was used.
It has been confirmed that the high reliability of magnetrons with an instantaneous availability time can be ensured by the use of non-cathode cathode assemblies in them, which include secondary emission cathodes with HEEE = 1 at Ep = 30…40 eV and HEEE = 2.6…3.5 at Ep = 600 eV and tantalum field emission sources having, after activation, Iaemin = 7.0 mA at Umax = 4200 V and
Iaemin = 10.0 mA at Umax = 4500 V. It is shown that at the initial stage of operation of the magnetron, its generation is ensured by the field emission current from a source activated in such a way that palladium micropoints are formed on its surface during the transfer of palladium from the material of the secondary emission Pd-Ba cathode at the final stage of vacuum-thermal treatment (activation) of the micropoint of Pd are coated with Ba and BaO films. These multicomponent micro-formations are proposed to be called whiskers. The auto-electronic cathodes formed in this way create the microcurrents necessary for the instantaneous launch of the magnetron at the initial stage of its functioning.
Li I.P. Features of creation of sources of electrons of magnetron devices with instant ready time for modern electronic systems. Electromagnetic waves and electronic systems. 2020. V. 25. № 3. P. 14−19. DOI: 10.18127/j15604128-202003-02 (in Russian).
- Dyubua B.Ch., Korolev A.N. Sovremennye effektivnye katody. Elektronnaya tekhnika. Ser. 1. Elektronika SVCh. 2011. № 1(508). S. 5−24. (in Russian)
- Dyubua B.Ch., Polivnikova O.V. O nekotorykh osobennostyakh i problemakh sovremennykh effektivnykh katodov. Elektronnaya tekhnika. Ser. 1. SVChtekhnika. 2013. № 4(519). S. 187−190. (in Russian)
- Marin V.P. Sostoyanie i perspektivy razvitiya katodnogo materialovedeniya moshchnykh SVCh EVP. Naukoemkie tekhnologii. 2003. T. 4. № 2. S. 8−16.
- Korzhavyi A.P., Prasitskii V.V., Prasitskii G.V. Heat-removing and emitting compositions based on w and pd powders: a study of the production processes and structures. Metal Science and Heat Treatment. 2018. V. 60. № 3−4. P. 200−205. (in Russian)
- Korzhavyi A.P., Kapustin V.I., Kozmin G.V. Metody eksperimentalnoi fiziki v izbrannykh tekhnologiyakh zashchity prirody i cheloveka. M.: INFRA-M. 2016. 351 s.
- Kargin A.N. Miniatyurnye sinkhronizirovannye magnetrony dlya sistem svyazi. Radiotekhnika. 2000. № 2. S. 62−66. (in Russian)
- Aitov R.D., Bondarenko G.G., Korzhavyi A.P. Noble metal-base composite alloys for long-lived seconday-electron emitters. Russian metallurgy. 1993. № 4. P. 199−201.
- Li I.P. Nanostruktury v palladii-barievykh katodakh SVCh-priborov. Elektronika. NTB. 2018. № 5. S. 1−7. (in Russian)
- Kapustin V.I., Li I.P., Moskalenko S.O., Shumanov A.V. Teoriya emissionnykh svoistv Pd-Ba katodov. Materialy XXVI nauchno-tekhnich. konf. s uchastiem zarubezhnykh spetsialistov «Vakuumnaya nauka i tekhnika». M.: Novella. 2019. S. 283−288. (in Russian)
- Bondarenko G.G., Bazhin A.I., Korzhavyi A.P., Kristya V.I., Aitov R.D. Determination of the surface potential of a dielectric layer on a target bombarded by an ion beam. Technical Physics. 1998. № 43(9). P. 1121−1122.
- Fedoseev I.V., Korzhavyi A.P., Maramygin K.V. Formation of diamonds and other carbon phases upon the destruction of palladium carbonyl clusters. Russian Journal of Inorganic Chemistry. 2013. V. 58. № 12. P. 1443−1445.
- Kapustin V.I., Korzhavyi A.P. Fizika elektronnykh materialov dlya vakuumnykh mikrovolnovykh priborov. Elektromagnitnye volny i elektronnye sistemy. 2016. T. 21. № 1. S. 42−52. (in Russian)
- Kapustin V.I., Li I.P., Shumanov A.V. i dr. Fizicheskii mekhanizm raboty skandatnykh katodov SVCh priborov. Zhurnal tekhnicheskoi fiziki. 2017. T. 87. № 1. S. 105−115. (in Russian)
- Egorov N.V., Sheshin E.P. Avtoelektronnaya emissiya. Printsipy i pribory. M.: Intellekt. 2000. 704 s. (in Russian)
- Nikiforov K.G., Korzhavyi A.P., Gorbachev V.V. i dr. Defekty i fizicheskie svoistva mnogokomponentnykh elektronnykh materialov. Pod red. K.G. Nikiforova. Kaluga: Izd-vo KGPU im. K.E. Tsiolkovskogo. 1999. 215 s. (in Russian)
- Pat. na izobretenie № 2069915 RF. Sposob izgotovleniya vtorichno-emissionnogo katoda. Korzhavyi A.P., Zvonetskii V.I., Mirzoeva S.D. i dr. (in Russian)
- Faifer S.I., Korzhavyi A.P., Zvonetskii V.I. i dr. Metallokeramicheskie katodnye materialy dlya elektrovakuumnykh priborov. Poroshkovaya metallurgiya. 1973. № 2. S. 101−107. (in Russian)
- Bondarenko G.G., Korzhavyi A.P. Effective emitters based on nickel, palladium and platinum. Russian metallurgy (Metally). 2000. № 4. P. 139−141.
- Pat. № 2380784 RF. Magnetron s beznakalnym zapuskom. Li I.P., Dyubua B.Ch., Kashirina N.V. i dr. 2008.
- Polyakov S.V., Silaev A.D., Ledentsova N.E. i dr. Puti sovershenstvovaniya konstruktsii i tekhnologii izgotovleniya katodov dlya magnetronov korotkovolnovoi chasti millimetrovogo diapazona dlin voln. Naukoemkie tekhnologii. 2014. T. 15. № 1. S. 51−56. (in Russian)