350 rub
Journal Electromagnetic Waves and Electronic Systems №1-2 for 2020 г.
Article in number:
Magnetic media for perpendicular magnetic recording
DOI: 10.18127/j15604128-202001-2-07
UDC: 539.216.2
Authors:

V.G. Shadrov – Ph.D.(Phys.-Math.), Leading Research Scientist, 
Scientific-Practical Materials Research Centre of NAS of Belarus (Minsk)
E-mail: nemtsevich@ifttp.bas-net.by

A.E. Dmitrieva – Junior Research Scientist, 
Scientific-Practical Materials Research Centre of NAS of Belarus (Minsk)
E-mail: nemtsevich@ifttp.bas-net.by

A.V. Boltushkin – Ph.D.(Phys.-Math.), Leading Research Scientist, 
Scientific-Practical Materials Research Centre of NAS of Belarus (Minsk) E-mail: nemtsevich@ifttp.bas-net.by

Abstract:

The invention and development of perpendicular magnetic recording has facilitated a great increase in areal density. For a recent years, however, data density increasing slows down due to trade-off between signal-to-noise ratio, thermal stability, and writability. As a solution, energy assisted magnetic recording and bit-patterned media are proposed. In the present paper the basic perpendicular recording media concepts and high anisotropy magnetic materials are analyzed as well as alternative materials and magnetic recording technologies. A further increase in the density of bits in magnetic storage media is possible on the basis of a compromise between maintaining the necessary signal-to-noise ratio, thermal stability of magnetic elements (grains) and achievable fields of recording heads, which involves the use of energy-assisted recording technologies and bit-structured media
In particular, the technology of thermally assisted magnetic recording involves a decrease in the average thermostable grain size to 3...4 nm and an increase in surface density to 4...5 Tb/inch2 in ordered L10 media based on FePt alloys. The need to heat the magnetic medium during recording to a value of the order of the Curie temperature requires optimization of the thermal properties of the magnetic layer, the parameters of the magnetic heads and the tribological characteristics of the head-to-disk interface. In particular, the implementation of HAMR technology involves maintaining the distribution of the magnetic field TC within 2%.
The problems of HAMR technology and the significant increase in the cost of its implementation create certain prerequisites for the implementation of MAMR on the basis of the existing technology of perpendicular recording, segmented recording media and the possibility of integrating a spin-transfer nano-oscillator into a reader / writer. An analysis of the magnetic properties of the materials of the recording media and read-write heads makes it possible to consider it reasonable to increase the surface density based on energy-recorded recordings up to 5 Tb/inch2. To achieve a surface recording density of 10 Tb/inch2 or higher, a combination of HAMR or MAMR and bit-structured technologies, including the use of multi-level structures, is considered.

Pages: 54-68
For citation

Shadrov V.G., Dmitrieva A.E., Boltushkin A.V. Magnetic media for perpendicular magnetic recording. Electromagnetic waves and electronic systems. 2020. V. 25. № 1–2. P. 54−68. DOI: 10.18127/j15604128-202001-2-07 (in Russian).

References
  1. Fontana R.E., Decad G.M. Moore’s law realities for recording systems and memory storage components: HDD, tape, NAND, and optical. AIP Adv. 2018. V. 8. P. 056506-1-5.
  2. Sanders D.,Valenzuela S.O., Makarov D., Marrows C.H., Fullerton E.E., Fischer P., McCord J., Vavassori P., Mangin S., Pirro P., Hillebrands B., Kent A.D., Jungwirth T., Gutfleisch O., Kim C.G., Berger A. The 2017 magnetism roadmap. J. Phys. D.: Appl. Phys. 2017. V. 50. P. 363001-1-33.
  3. Chaudhary R., Kansal A. A perspective on the future of the magnetic hard disk drive technology. Int. J. Tech. Res. Appl. 2015. V. 3. P. 63−74.
  4. Iwasaki S. Perpendicular magnetic recording-its development and realization// Proc. Jpn. Acad. Sci. B. Phys. Biol. Sci. 2009. V. 85. P. 37−54.
  5. Wang F., Xu X.-H. Writability issues in high-anisotropy perpendicular magnetic recording media. Chin. Phys. B. 2014. V. 23. P. 036802-1-24.
  6. Wood R., Williams M., Kavcic A., Miles J. The feasibility of magnetic recording at 10 Tb/inch2 on conventional media. IEEE Trans. Magn. 2009. V. 45. P. 917−923.
  7. Okamoto S., Kikuchi N., Furuta M., Kitakami O., Shimatsu T. Microwave assisted magnetic recording technologies and related physics. J. Phys. D: Appl. Phys. 2015. V. 48. P. 353001-1-18.
  8. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted shingled magnetic recording. IEEE Trans. Magn. 2015. V. 51. P. 1−4.
  9. Gavrila H. Achievements and expected issues in heat assisted magnetic recording. J. Engineer. Sci. Innov. 2017. V. 2. P. 16−26.
  10. Vogler C., Abert C., Bruckner F., Suess D., Praetorius D. Heat-assisted magnetic recording of bit-patterned media beyond 10 Tb/in2// Appl. Phys. Lett. 2016. V. 108. P. 102406-1-6.
  11. Kief M.T., Victora R.Y. Materials for heat-assisted magnetic recording. MRS Bull. 2018. V. 43. P. 87−92.
  12. Albrecht T.R., Bedau D., Dobisz E., Gao H., Grobis M., Hellwig O., Kercher D., Lille J., Marinero E., Patel K., Ruiz R., Schabes M.E., Wan L., Weller D., Wu T.-V. Bit patterned media at 1 Tdot/in2 and beyond. IEEE Trans. Magn. 2013. V. 49. P. 773−778.
  13. Futamoto M., Ohtake M. Development of media nanostructure for perpendicular magnetic recording. J. Magn. Soc. Jap. 2017. V. 41. P. 108−126.
  14. Tang K., Bian X., Choe G., Takano K., Mirzamaani M., Wang G., Zhang J., Xiao Q.F., Ikeda Y., Risner-Jamtgaard J., Xu X. Design consideration and practical solution of high-performance perpendicular magnetic recording media. IEEE Trans. Magn. 2009. V. 45. P. 786−792.
  15. Wang T., Mehta V., Ikeda Y., Do H., Takano K., Florez S., Terris B.D., Wu B., Graves C., Shu M., Rick R., Scherz A., Stöhr J., Hellwig O. Magnetic design evolution in perpendicular magnetic recording media as revealed by resonant small angle x-ray scattering. Appl. Phys. Lett. 2013. V. 103. P. 112403-1-4.
  16. Yang Y., Varghese B., Tan H.K., Wong S.K., Piramanayagam S.N. Inves- tigations of stacking faults in stacked granular perpendicular recording media with a high-anisotropy CoPt layer. IEEE Trans. Magn. 2014. V. 50. P. 14−17.
  17. Matsunuma S., Yano A., Koda T., Onuma T., Yamanka H., Fujita E. Cross-sectional control of boron contents and the microstructures of Co/Pd multilayer perpendicular magnetic recording media. IEEE Trans. Magn. 2004. V. 40. P. 2492−2494.
  18. Liao J.W., Dumas R.K., Hou H.C., Huang Y.C., Tsai W.C., Wang L.W., Wang D.S., Lin M.S., Wu Y.C., Chen R.Z., Chiu C.H., Lau J.W., Liu K., Lai C.H. Simultaneous enhancement of anisotropy and grain isolation in CoPtCr-SiO perpendicular recording media by a MnRu intermediate layer. Phys. Rev. B. 2010. V. 82. P. 014423-1-5.
  19. Choe G., Park J., Ikeda Y., Lengsfield B., Olson T., Zhang K.Z., Florez S., Ghaderi A. Writeability enhancement in perpendicular magnetic multilayered oxide media for high areal density recording. IEEE Trans. Magn. 2011.V. 47. P. 55−62.
  20. Futamoto M., Handa T., Takahashi Y. Compositional structure and magnetic properties of CoCrPt-SiOx perpendicular recording medium. IEEE Trans. Magn. 2008. V. 44. P. 3488−3491.
  21. Oikawa T., Nakamura M., Uwazumi H., Shimatsu T., Muraoka H., Nakamura Y. Microstructure and magnetic properties of CoPtCr-SiO2 perpendicular recording media. IEEE Trans. Magn. 2002. V. 38. P. 1976−1978.
  22. Tan H.K., Varghese B., Piramanayagam S.N. Magnetic interactions in CoCrPt-oxide based perpendicular magnetic recording media. J. Appl. Phys. 2014. V. 116. P. 163909-1-4.
  23. Tudu B., Tiwari A. Recent developments in perpendicular magnetic anisotropy thin films for data storage applications. Mater. Sci. Eng.Vacuum. 2017. V. 5.UDC 539.216.2.
  24. Wang F., Xing H., Xu X. Overcoming the trilemma issues of ultrahigh density perpendicular magnetic recording media by L10-Fe(Co)Pt materials. Spin. 2015. V. 5. P. 1530002-1-26.
  25. Gavrila H. Coupled granular/continuous media for perpendicular magnetic recording. Proc. Roman. Acad. A. 2010.V. 11. P. 41−46.
  26. Sonobe Y., Tham K.K., Wu J., Umezava T., Takatsu C., Dumaya J.A.H., Onoue T., Leo P.Y., Liau M. CGC perpendicular recording media with CoCrPt-SiO2 alloy as granular layer. IEEE Trans. Magn. 2006. V. 42. P. 2351−2353.
  27. Yasumori J., Sonobe Y., Greaves S.J., Tham K.K. Approach to high-density recording using CGC structure. IEEE Trans. Magn. 2009. 45. P. 850−855.
  28. Yasumori J., Miura K., Muraoka H., Sonobe Y., Wago K. SNR improvement by intergranular exchange coupling in CGC perpendicular magnetic recording media. J. Magn. Magn. Mater. 2008. V. 320. P. 3079−3082.
  29. Berger A., Supper N., Ikeda Y., Lengsfield B., Moser A., Fullerton E.E. Improved media performance in optimally coupled exchange spring layer media. Appl. Phys. Lett. 2008. V. 93. P. 122502-1-3.
  30. Suess D., Fuger M., Abert C., Bruckner F., Vogler C. Superior bit error rate and jitter due to improved switching field distribution in exchange spring magnetic recording media. Sci. Rep. 2016. V. 6. P. 27048-1-12.
  31. Guo H.H., Liao J.L., Ma B., Zhang Z.Z., Jin Q.Y. Microstructure and magnetization reversal of L10-FePt/[Co/Pt]N exchange coupled composite films. Appl. Phys. Lett. 2012. V. 100. P. 142406-1-4.
  32. Ma B., Wang H., Zao H., San C., Acharia R., Wang J.P. Structural and magnetic properties of a core-shell type L10 FePt/Fe exchange coupled nanocomposite with tilted easy axis. J. Appl. Phys. 2011. V. 109. P. 083907-1-5.
  33. Wang J.P., Shen W.K., Hong S.Y. Fabrication and characterization of exchange coupled composite media. IEEE Trans. Magn. 2007. 43. P. 682−686.
  34. Makarov D., Lee J., Brombasher C., Schubert C., Fuger M., Suess D., Filder J., Albrecht M. Perpendicular FePt based exchange coupled composite media. Appl. Phys. Lett. 2010. V. 96. P. 062501-1-4.
  35. Gaur N., Pandey K.K.M., Maurer S.L., Piramanayagam S.N., Nunes R.W.,Yang H., Bhatia C.S. Magnetic and structural properties of CoCrPt–SiO2-based graded media prepared by ion implantation. J. Appl. Phys. 2011. V. 110. 083917-1-4.
  36. Bona A.D., Luches P., Albertini F., Casoli F., Lupo P., Nasi L., D’Addato S., Gazzadi C., Valeri S. Anisotropy-graded magnetic media obtained by ion irradiation of L10 FePt. Acta Mater. 2013. V. 61. P. 4840−4847.
  37. Hahn D., Bashir M.A., Schrefl T., Cazau A., Gubbins M.A., Suess D. Graded media design for area density of up to 2.5 Tb/in2. IEEE Trans. Magn. 2010. V. 46. P. 1806−1808.
  38. Nolan T., Valcu B., Richter H.J. Effect of composite designs on writability and thermal stability of perpendicular recording media. IEEE Trans. Magn. 2011.V. 47. P. 63−68.
  39. Chureemart P., Evans R.F.L., Chantrell R.W., Huang P.-W., Wang K., Ju G., Chureemart J. Hybrid design for advanced magnetic recording media:combining exchange-coupled composite media with coupled granular continuous media. Phys. Rev. Appl. 2017. V. 8. P. 024016-1-9.
  40.  Zhu J.-G., Wang Y. SNR enhancement in segmented perpendicular media. IEEE Trans. Magn. 2011.V. 47. P. 4066−4072.
  41. Weller D., Parker G., Mosendz O., Champion E., Stipe B., Wang X., Klemmer T., Ju G., Ajan A. A HAMR media technology roadmap to an areal density of 4 Tb/in2. IEEE Trans. Magn. 2014. V. 50. P. 3100108-1-8.
  42. Ju G., Peng Y., Chang E.C., Ding Y., Wu A.Q., Zhu X., Kubota Y., Klemmer T.J., Amini H., Gao L., Fan Z., Rausch T., Subedi P., Ma M., Kalarickal C., Rea C.J., Dimitrov D.V., Huang P.-W., Wang K., Chen X., Peng C., Chen W., Dykes J.W., Seigler M.A., Gage E.C.,Chantrell R., Thiele J.-U. High density heat-assisted mag-netic recording media and advanced characterization- progress and challenges. IEEE Trans. Magn. 2015. V. 51. P. 3201709-1-9.
  43. Shadrov V.G., Dmitrieva A.E., Boltushkin A.V. Magnitnye sredy dlya termoassistirovannoi magnitnoi zapisi. Uspekhi sovremennoi radioelektroniki. 2017. № 2. S. 62−74 (in Russian).
  44. Kubota Y., Peng Y., Ding Y., Chang E.K., Gao L., Zavaliche F., Klemmer T.J., Zhu S., Zhu X., Huang P-W., Wu A.O., Amini H., Granz S., Rausch T., Rea C.J., Qiu J., Yin H., Seigler M.A., Chen Y., Ju G., Thiele J.-U. Heat-assisted magnetic recording’s extensibility to high linear and areal density. IEEE Trans. Magn. 2018. V. 54. P. 1−6.
  45. Weller D., Mosendz O., Parker G., Pisana S., Santos T.S. L10 FePtX-Y media for heat-assisted magnetic recording. Phys. Stat. Sol. A. 2013.V. 210. P. 1245−1260.
  46. Weller D., Parker G., Mosendz O., Lyberatos A.,Mitin D., Safonova N.Y., Albrecht M. FePt heat-assisted magnetic recording media. J. Vac. Sci. Technol. B. 2016. V. 34. P. 060801-1-10.
  47. Hono K., Takahashi Y.K., Ju G., Thiele J-U., Ajan A., Yang X.M., Ruiz R., Wan L. Heat-assisted magnetic recording media materials. MRS Bull. 2018. V. 43. P. 93−99.
  48. Ho H., Laughlin D.E., Zhu J.-G. Effect of RuAl and TiN underlayers on grain morphology, ordering, and magnetic properties of FePt-SiO thin films. IEEE Tran. Magn. 2013. V. 49. P. 3663−3666.
  49. Zhang L., Takahashi Y.K., Hono K., Stipe B.C., Juang J.-Y., Grobis M. L10 ordered FePtAg-C granular thin film for thermally assisted magnetic recording media. J. Appl. Phys. 2011. V. 109. P. 07B703-1-4.
  50. Mosendz O., Pisana S., Reiner J.W., Stipe B., Weller D. Ultra-high coercivity small-grain FePt media for thermally assisted recording.  J. Appl. Phys. 2012. V. 111. P. 07B729-1-4.
  51. Gilbert D.A., Wang L.W., Klemmer T.J., Thiele J.U., Lai C.H., Liu K. Tuning magnetic anisotropy in (001) oriented L10 (Fe1−xCux)55Pt45 films. Appl. Phys. Lett. 2013. V. 102. P. 132406-1-4.
  52. Hu J.F., Zhou T.J., Phyoe W.L., Cher K., Shi J.Z. Microstructure control of L10 ordered FePt granular film for HAMR application. IEEE Trans. Magn. 2013. V. 49. P. 3737−3739.
  53. Thiele J.-U., Maat S., Fullerton E.E., Robertson J.L. Magnetic and structural properties of FePt-FeRh exchange spring films for thermally assisted magnetic recording media. IEEE Trans. Magn. 2004. V. 40. P. 2537−2539.
  54. Kikitsu A., Kai T., Nagase T., Akiyama J.-I. A concept of exchange-coupled recording medium for heat-assisted magnetic recording. J. Appl.Phys. 2005. V. 97. P. 10P701-1-4.
  55. Muthsam O., Vogler C., Suess D. Noise reduction in heat-assisted magnetic recording of bit-patterned media by optimizing a high/low Tc bilayer structure. J. Appl. Phys. 2017. V. 122. P. 213903-1-7.
  56. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures. J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  57. Natekar N.A., Liu Z., Hernandez S., Victora R.H. SNR improvement by variation of recording and media parameters for a HAMR exchange coupled composite media. AIP Adv. 2016. V. 8. P. 056513-1-5.UDC 539.216.2
  58. Liu Z.,Victora R.H. Exchange coupled composite media for heat assisted magnetic recording. AIP Adv. 2017. V. 7. P. 056516-1-6.
  59. Suess D., Vogler C., Abert C., Bruckner F., Windl R., Breth L. Fundamental limits in heat-assisted magnetic recording and methods to overcome it with exchange spring structures. J. Appl. Phys. 2015. V. 117. P. 163913-1-4.
  60. Oezelt H., Kovacs A., Fischbacher J., Matthes P., Kirk E., Wohlhuter P., Heyderman L.J., Albrecht M., Schre1 T. Switching field distribution of exchange coupled ferri-/ferromagnetic composite bit patterned media// J. Appl. Phys. 2016. V. 120. P. 093904-1-10.
  61. Chen Y.J., Yang H.Z., Leong S.H., Santoso B., Shi J.Z., Xu B.X., Tsai J.W. Heat-assisted recording on bottom layer of dual recording layer perpendicular magnetic recording media for two and half dimensional (2.5 D) magnetic data storage. J. Appl. Phys. 2015. V. 117. P. 17C106-1-4.
  62. Mallary M., Srinivasan K., Bertero G., Wolf D., Kaiser C., Chaplin M., Elliot C., Pakala M., Leng Q., Liu F., Wang Y., Silva T.J., Shaw J.M., Nembach H.T. Head and media challenges for 3 Tb/in2 microwave assisted magnetic resording. IEEE Trans. Magn. 2014. V. 50. P. 3001008-1-9.
  63. Zhu J.G. SNR and areal density gain in MAMR with segmented media. IEEE Trans. Magn. 2014. V. 50. P. 74−82.
  64. Zhao Z., Li J., Wang L., Wei D., Gao K.-Z. Signal-to-noise ratio improvement of MAMR on CoX/Pt media. IEEE Trans. Magn. 2015. V. 51. P. 3202204-1-4.
  65. Bai X., Zhu J.G. Medium stack optimization for microwave assisted magnetic Recording. IEEE Trans. Magn. 2017. V. 53. P. 200736-1-6.
  66. Zhao Z., Li J., Wang L., Wei D. Influence of exchange on signal-to-noise ratio in [CoX/Pt]4 media. AIP Adv. 2017. V. 7. P. 056515-1-5.
  67. Bai X., Zhu J.G. Segmented media and medium damping in microwave assisted magnetic recording. AIP Adv. 2018. V. 8. P. 056508-1-5.
  68. Sbia R., Piramanayagam S.N. Patterned media towards nano-bit magnetic recording: fabrication and challenges. Rec. Pat. Nanotech. 2007. V. 1. P. 29−40.
  69. Albrecht T.R., Arora H., AYanoor-Vitikkate V., Beaujour J.-M., Bedau D., Berman D., Bogdanov A.L., Chapuis Y.-A., Cushen J., Dobish E.E., Doerk G., Gao H., Grobis M., Gurney B., Hanson W., Hellwig O., Hirano T., Jubert P.-O., Kercher D., Lille D., Liu J.,
  70. Mate C.M., Obuchov Y., Patel K.C., Rubin K., Ruiz R., Schabes M., Wan L., Weller D., Wu T.-W., Yang E. Bit Patterned magnetic recording: Theory, media fabrication, and recording performance. IEEE Trans. Magn. 2015. V. 51. P. 1−43.

  71. Griffiths R.A., Williams A., Oakland C., Roberts J., Viyayaraghavan A., Thomson T. Directed self-assembly of block copolymers for use in bit ratterned media fabrication. J. Phys. D.: Appl. Phys. 2013. V. 46. P. 503001-1-29.
  72. Malloy M., Litt L.C. Technology review and assessment of nanoimprint lithography for semiconductor and patterned media manufacturing. J. Micro & Nanolith. MEMS MOEMS. 2011. V. 10. P. 032001-1-13.
  73. Pfau B., Günther C.M., Guehrs E., Hauet T., Hennen T., Eisebitt S., Hellwig O. Influence of stray fields on the switching-field distribution for bit-patterned media based on pre-patterned substrates. Appl. Phys. Lett. 2014. V. 105. P. 132407-1-3.
  74. Pfau B., Günther C.M., Guehrs E., Hauet T., Yang H., Vinh L., Xu X., Yaney D., Rick R., Eisebitt S., Hellwig O. Origin of magnetic switching field distribution in bit patterned media based on pre-patterned substrates. Appl. Phys. Lett. 2011. V. 99. P. 062502-1-3.
  75. Elbagi N., Kan J.J., Spada F.E., Fullerton E.E. Role of dipolar interactions on the thermal stability of high-density bit-patterned media. IEEE Magn. Lett. 2012. V. 3. P. 4500204-1-4.
  76. Hauet T., Dobisz E., Florez S., Park J., Lengsfield B., Terris B.D., Hellwig O. Role of reversal incoherency in reducing switching field and switching field distribution of exchange coupled composite bit patterned media. Appl. Phys. Lett. 2009. V. 95. P. 262504-1-3.
  77. Tudosa I., Lubarda M.V., Chan K.T., Escobar M.A., Lomakin V., Fullerton E.E. Thermal stability of patterned Co/Pd nanodot arrays. Appl. Phys. Lett. 2012. V. 100. P. 102401-1-4.
  78. Lee J., Brombacher C., Fidler J., Dymerska B., Suess D., Albrecht M. Contribution of the easy axis orientation, anisotropy distribution and dot size on the switching field distribution of bit patterned media. Appl. Phys. Lett. 2011. V. 99. P. 062505-1-4.
  79. Ranjbar M., Tavakkoli K.G., Piramanayagam S.N., Tan K.P., Sbiaa R., Wong S.K., Chong T.C. Magnetostatic interaction effects in switching field distribution of conventional and staggered bit-patterned media. Appl. Phys. 2011. V. 44. P. 265005-1-3.
  80. Wang H., Zhao H.B., Rahman T., Isowaki Y., Kamata Y., Maeda T., Hieda H., Kikitsu A., Wang J.P. Fabrication and characterization of FePt exchange coupled composite and graded bit patterned media. IEEE Trans. Magn. 2013. V. 49. 707−712.
  81. Shadrov V.G., Dmitrieva A.E., Boltushkin A.V. Strukturirovannye sredymagnitnoi zapisi. Uspekhi sovremennoi radioelektroniki. 2018. № 1. S. 9−10. (in Russian)
  82. Vogler C., Abert C., Bruckner F., Suess D. Efficiently reduction transition curvature in heat-assisted magnetic recording with state-ofthe-art write heads. J. Phys.: Comp. Phys. 2017. V. 50. P. 54−57.
  83. Xu B.X., Ji R., Toh Y.T., Hu J.F., Li J.M., Zhang J. Performance benefits from pulsed laser heating in heat assisted magnetic recording. J. Appl. Phys. 2014. V. 115. P. 17B701-1-4.
  84. Granz S., Zhu W., Rea C., Ju G., Thiele J.-U., Rausch T., Gage E. Heat-assisted interlaced magnetic recording. IEEE Trans. Magn. 2018. V. 54. P. 1−4.
  85. Amos N., Butler J., Lee B., Shachar M.H., Hu B., Tian Y., Hong J., Garcia D., Ikkawi R.M., Haddon R.C., Litvinov D., Khizroev S. Multilevel-3D bit patterned magnetic media with 8 signal levels per nanocolumn. PLoS One. 2012. V. 7. R. e40134-1-8.
  86. Kaidatzis A., Giannopoulos G., Varvaro G., Dimitrakopulos G., Psycharis Y., Garcia-Martin J.M., Testa A.M., Barucca G., Karakostas T., Komninou P., Niarchos D. Investigation of magnetic coupling in FePt/spacer/FePt trilayers. J. Phys. D: Appl. Phys. 2017. V. 50. P. 445002 -1-8.
  87. Suto H., Nagasawa T., Kudo K., Kanao T., Mizushima K., Sato R. Layer- selective switching of a double-layer perpendicular magnetic nanodot using microwave assistance. Phys. Rev. Appl. 2016. V. 5. P. 014003-1-8.
  88. Suto H., Kudo K., Nagasawa T., Kanao T.,Mizushima K., Sato R. Three-dimensi-onal magnetic recording using ferromagnetic resonance. Jpn. J. Appl. Phys. 2016. V. 55. P. 07MA01-1-10.
  89. Greaves S.J., Kanai Y., Muraoka H. Microwave-assisted magnetic recording on dual-thickness and dual-layer bit patterned media. IEEE Trans. Magn. 2016. V. 51. P. 253756-1-6.
  90. Yang T., Suto H., Nagasawa T., Kudo K., Mizushima K., Sato R. Readout method from antiferromagnetically coupled perpendicular magnetic recording media using ferromagnetic resonance. J. Appl. Phys. 2013.V. 114. P. 213901-1-4.
  91. Wang Y.Y., Song C., Zhang J.Y., Pan F. Spintronic materials and devices based on antiferromagnetic metals. Progr. Nat. Sci.: Mat. Int. 2017. V. 27. P. 208−216.
Date of receipt: 21 марта 2019 г.