350 rub
Journal Electromagnetic Waves and Electronic Systems №7 for 2019 г.
Article in number:
Basic concepts of solving the efficiency of ecological GIS
Type of article: scientific article
DOI: 10.18127//j15604128-201907-02
UDC: 004.05
Authors:

O.O. Kozeeva – Post-graduate Student,

Department «Information Systems and Networks», Kaluga branch of the Bauman MSTU

E-mail: bluelectricat@gmail.com

I.V. Chukhraev – Ph.D.(Eng.), Associate Professor, Head of Department «Information Systems and Networks»,  Kaluga branch of the Bauman MSTU

E-mail: chukhraev@bmstu-kaluga.ru

Abstract:

Introduction. Ecological geographic information system (GIS) are used in many areas of activity related to environmental monitoring and for solving a wide range of tasks. Currently, there is a need not only to develop existing GIS, but also to study the possibilities of applying the latest technologies to optimize the performance of various processes.

Purpose. Accumulation of relevant information on the subject of application of modern computer technologies in environmental GIS to study possible ways to increase their efficiency and establish general principles for constructing such systems.

Results. This article discusses the main directions of development of this technology and ways to increase its effectiveness through the introduction of automation tools for collecting and processing information. Direct monitoring of the current environmental situation, inventory of ecological GIS objects, assessment and forecasting include a series of actions for identifying objects, collecting and analyzing various information that require certain accuracy and speed of processing a large amount of specific data. To achieve the necessary values for these requirements, it is promising to use a number of computer technologies: computer vision technologies, modeling, hardware acceleration, examples of which are given in this article. Based on the study of the subject area, primary schemes of the subsystem of ecological GIS that aimes at increasing the efficiency of the process of collecting and processing data were developed.

Pages: 10-15
References
  1. Andreeva V.A. Obzor kollektsii roda Geranium L.(Geraniaceae Juss.) v GBS RAN. Reshenie strategicheskikh zadach botanicheskikh sadov Rossii v oblasti sokhraneniya bioraznoobraziya rastenii na sovremennom etape. 2011. S. 13. (in Russian)
  2. Efimov S.V. Palinomorfologicheskoe issledovanie vidov i sortov roda paeonia l. Materialy Vseross. nauch. konf. «Botanicheskie sady v sovremennom mire: teoreticheskie i prikladnye issledovaniya». Moskva. 2011. S. 191−197. (in Russian)
  3. Kazakova M.V. i dr. Kollektsiya rastenii biostantsii Ryazanskogo gosudarstvennogo universiteta. Materialy Vseross. nauch. konf. «Botanicheskie sady v sovremennom mire: teoreticheskie i prikladnye issledovaniya». 2011. S. 226−229. (in Russian)
  4. Petin O.V., Nezhentseva T.V. Opyt primeneniya Google Earth v inventarizatsii kollektsii Pinaceae Lindl. Stavropolskogo botanicheskogo sada. Materialy Vseross. nauch. konf. «Botanicheskie sady v sovremennom mire: teoreticheskie i prikladnye issledovaniya». 2011. S. 520−525. (in Russian)
  5. Kotenko Yu.V. Provedenie rabot po kartografirovaniyu landshaftnogo dendrariya v Stavropolskom botanicheskom sadu im. VV Skripchinskogo. Hortus Botanicus. 2016. № 11. S. 136−141. (in Russian)
  6. Linsangan N.B., Pangantihon Jr R.S. FPGA-Based Plant Identification Through Leaf Veins. Proceedings of the 2018 5th International Conference on Biomedical and Bioinformatics Engineering. ACM. 2018. S. 100−104.
  7. Eid H.F., Hassanien A.E., Kim T.H. Leaf Plant Identification system based on hidden naive bays classifier //2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS). IEEE. 2015. S. 76−79.
  8. Detection and Recognition of Plant Diseases using FPGA based real-time processing. URL: http://www.innovatefpga.com/cgibin/innovate/teams2018.pl?Id=AP074 (25.09.2019).
  9. Wäldchen J. et al. Automated plant species identification–Trends and future directions. PLoS computational biology. 2018. T. 14. № 4. S. e1005993.
  10. Pat. RF № 2461814, G01N21/35. Sposob opredeleniya soderzhaniya vlagi v listyakh rastenii in vivo. G.G. Akchurin, G.G. Akchurin. Zayavka № 2011102428/28 ot 24.01.2011. Opubl. 20.09.2012, byul. № 26. (in Russian)
  11. Kozeeva O.O., Chukhraev I.V., Maksimov A.V. Analiz rabotosposobnosti programmy prognozirovaniya svoistv khimicheskikh soedinenii. Uspekhi sovremennoi radioelektroniki. 2019. № 1. S. 47−55. (in Russian)
  12. Deryugina E.O., Chukhraev I.V., Kozeeva O.O. Programmnoe modelirovanie prognozirovaniya khimicheskikh svoistv na osnove strukturnoi teorii. Vestnik obrazovatelnogo konsortsiuma Srednerusskii universitet. Informatsionnye tekhnologii. 2018. № 2(12). S. 31−34. (in Russian)
  13. Kozeeva O.O., Chukhraev I.V., Rodionov A.V. Razrabotka na yazyke Python modulya poiska podstruktur v khimicheskikh soedineniyakh. Elektromagnitnye volny i elektronnye sistemy. 2018. T. 23. № 3. S. 57−61. (in Russian)
  14. Jeong K.Y., Wu L., Hong J.D. IDEF method-based simulation model design and development. Journal of Industrial Engineering and Management. 2009. T. 2. № 2. S. 337−359.
  15. Luneva N.N., Chukhina I.G., Lebedeva E.G. Novyi uroven razvitiya BD i IPS «Gerbarii VIR». Tez. dokl. rabochego soveshchaniya «Problemy sozdaniya botanicheskikh baz dannykh». 24−26 okt. 2000. Novosibirsk. M.: Patent. 2000. S. 51−53. (in Russian)
Date of receipt: 3 сентября 2019 г.