350 rub
Journal Electromagnetic Waves and Electronic Systems №6 for 2019 г.
Article in number:
The possibility of using the transistor model for analysis and optimization of processes of light absorption by «soft» condensed matter
Type of article: scientific article
DOI: 10.18127/j15604128-201906-07
UDC: 538.958
Authors:

S.I. Supelnyak – Post-graduate Student, 

Kaluga branch of the Bauman MSTU

E-mail: supelnyak@gmail.com

V.G. Kosushkin - Dr.Sc.(Eng.), Professor, 

Kaluga branch of the Bauman MSTU

E-mail: kosushkin@gmail.com

Abstract:

The structure and functions of macromolecules are being actively studied. The functioning of each biological system is associated with many complex mechanisms, a significant proportion of which have not been fully studied. However, the problem of predicting the impact of external energy influences on the biological system becomes more relevant every year. And the possibility of using a model of a semiconductor device to describe the properties of a single protein, as well as an organic system, is undoubtedly of interest. To consider the possibility of using a transistor model for analysis and optimization of light absorption by a “soft” condensed substance using the CRY photoreceptor protein as an example. It was shown that the output signal (concentration of active forms of flavin FADH-) is modulated by a weak control action (pH and ATP), as well as compliance with other generic features of bipolar transistors. It was found that the dependence of photoreduction FAD* to FADH- on the amount of light energy and ATP concentration is accurately described by the logistic function. The generality of approaches of solid-state physics and soft condensed matter physics is shown. The proposed physical model allows us to expand the methods of experimental study of the properties of complex photosensitive organic systems.

Pages: 47-54
References
  1. Saliya N.T., Bokeriya O.L., Dzidziguri D.V., Bakuradze E.D., Modebadze I.R. Vliyanie nizkointensivnykh elektromagnitnykh polei endogennogo proiskhozhdeniya na proliferativnuyu aktivnost regeneriruyushchei tkani pecheni eksperimentalnykh zhivotnykh. Elektromagnitnye volny i elektronnye sistemy. 2017. T. 22. № 5. S. 75−82. (in Russian)
  2. Anishchenko L.N., Vasilev I.A., Chizh M.A. Radiolokator blizhnego deistviya s nepreryvnym izlucheniem dlya issledovaniya biologicheskikh ob’ektov. Elektromagnitnye volny i elektronnye sistemy. 2018. T. 23. № 6. S. 20−24. DOI 10.18127/j15604128-201806-03. (in Russian)
  3. Daniel R., Woo S.S., Turicchia L., Sarpeshkar R. Analog transistor models of bacterial genetic circuits. IEEE Biomedical Circuits and Systems Conference (BioCAS). 2011. P. 333−336.
  4. Fortunato A.E., Annunziata R., Jaubert M., Bouly J.P., Falciatore A. Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms. Journal of plant physiology. 2015. V. 172. P. 42−54.
  5. Huang Y., Baxter R., Smith B.S., Partch C.L., Colbert C.L., Deisenhofer J. Crystal structure of cryptochrome 3 from Arabidopsis thaliana and its implications for photolyase activity. Proceedings of the National Academy of Sciences. 2006. V. 103. № 47. P. 17701−17706.
  6. Sancar A. Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors. Chemical reviews. 2003. V. 103. № 6. P. 2203−2238.
  7. Brazard J., Ley C., Lacombat F., Plaza P., Mony L., Heijde M., Zabulon G., Bowler C. Photoantenna in two cryptochrome–photolyase proteins from O. tauri: Presence, nature and ultrafast photoinduced dynamics. Journal of Photochemistry and Photobiology A: Chemistry. 2012. V. 234. P. 135−145.
  8. Kim S.T., Heelis P.F., Sancar A. Energy transfer (deazaflavin → FADH2) and electron transfer (FADH2→T<>T) kinetics in Anacystis nidulans photolyase. Biochemistry. 1992. V. 31. № 45. P. 11244−11248.
  9. Lin C. Blue light receptors and signal transduction. The Plant Cell. 2002. V. 14. № suppl 1. P. S207−S225.
  10. Uein R. Osnovy i primeneniya fotokhimii: Per. s angl. M.: Mir. 1991. 304 s. (in Russian)
  11. Hamers D., van Voorst Vader L., Borst J.W., Goedhart J. Development of FRET biosensors for mammalian and plant systems. Protoplasma. 2014. V. 251. № 2. P. 333−347.
  12. Cryptochrome and Magnetic Sensing. KS.UIUC.EDU: gruppa teoreticheskoi i vychislitelnoi biofiziki. 2006. URL = http://www.ks.uiuc.edu/Research/cryptochrome (data obrashcheniya 17.08.2019). (in Russian)
  13. Müller P., Bouly J.P., Hitomi K., Balland V., Getzoff E.D., Ritz T., Brettel K. ATP binding turns plant cryptochrome into an efficient natural photoswitch. Scientific reports. 2014. V. 4. P. 5175−5185.
  14. Finkelshtein A.V., Ptitsyn O.B. Fizika belka: kurs lektsii s tsvetnymi i stereoskopicheskimi illyustratsiyami i zadachami: Ucheb. posobie. Izd. 5-e, ispr. i dop. M.: KDU. 2014. 524 s. (in Russian)
  15. Proskurina I.K. Biokhimiya: Ucheb. posobie dlya studentov vuzov. M.: Vlados-Press. 2004. 236 s. (in Russian)
  16. Russell A.J., Fersht A.R. Rational modification of enzyme catalysis by engineering surface charge. Nature. 1987. V. 328. № 6130. P. 496−500.
  17. Golovatyi Yu.P. Osnovy poluprovodnikovoi elektroniki: Ucheb. posobie. Kaluga: MGTU im. N.E. Baumana. 2006. 202 s. (in Russian)
  18. Svettsov V.I., Kholodkov I.V. Fizicheskaya elektronika i elektronnye pribory: Ucheb. posobie. Ivanovo: Ivanovskii gosudarstvennyi khimiko-tekhnologicheskii un-t. 2008. 494 s. (in Russian)
  19. Maas A.L., Hannun A.Y., Ng A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc. icml. 2013. V. 30. № 1. P. 3−8.
  20. Yin X., Zelenay P. Kinetic Models for the Degradation Mechanisms of PGM-Free ORR Catalysts. ECS Transactions. 2018. V. 85. № 13. P. 1239−1250.
  21. Bonch-Bruevich V.L., Kalashnikov S.G. Fizika poluprovodnikov. Ucheb. posobie dlya vuzov. Izd. 2-e, pererab. i dop. M.: Nauka. 1990. 688 s. (in Russian)
  22. Burney S., Hoang N., Caruso M., Dudkin E.A., Ahmad M., Bouly J.P. Conformational change induced by ATP binding correlates with enhanced biological function of Arabidopsis cryptochrome. FEBS letters. 2009. V. 583. № 9. P. 1427−1433.
Date of receipt: 6 августа 2019 г.